首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1353篇
  免费   58篇
  国内免费   7篇
化学   886篇
晶体学   10篇
力学   33篇
数学   145篇
物理学   344篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   12篇
  2019年   37篇
  2018年   22篇
  2017年   18篇
  2016年   30篇
  2015年   37篇
  2014年   34篇
  2013年   80篇
  2012年   79篇
  2011年   92篇
  2010年   50篇
  2009年   41篇
  2008年   75篇
  2007年   71篇
  2006年   76篇
  2005年   46篇
  2004年   56篇
  2003年   53篇
  2002年   41篇
  2001年   35篇
  2000年   36篇
  1999年   19篇
  1998年   24篇
  1997年   17篇
  1996年   21篇
  1995年   15篇
  1994年   13篇
  1993年   14篇
  1992年   22篇
  1991年   29篇
  1990年   23篇
  1989年   14篇
  1988年   13篇
  1987年   11篇
  1986年   14篇
  1985年   20篇
  1984年   17篇
  1983年   19篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1979年   11篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   7篇
  1970年   3篇
排序方式: 共有1418条查询结果,搜索用时 171 毫秒
1.
2.
We study a model of random graph where vertices are n i.i.d. uniform random points on the unit sphere Sd in , and a pair of vertices is connected if the Euclidean distance between them is at least 2??. We are interested in the chromatic number of this graph as n tends to infinity. It is not too hard to see that if ?>0 is small and fixed, then the chromatic number is d+2 with high probability. We show that this holds even if ?→0 slowly enough. We quantify the rate at which ? can tend to zero and still have the same chromatic number. The proof depends on combining topological methods (namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric probability arguments. The rate we obtain is best possible, up to a constant factor—if ?→0 faster than this, we show that the graph is (d+1)‐colorable with high probability.25  相似文献   
3.
4.
The design and the characterization of supramolecular additives to control the chain length of benzene-1,3,5-tricarboxamide (BTA) cooperative supramolecular polymers under thermodynamic equilibrium is unraveled. These additives act as chain cappers of supramolecular polymers and feature one face as reactive as the BTA discotic to interact strongly with the polymer end, whereas the other face is nonreactive and therefore impedes further polymerization. Such a design requires fine tuning of the conformational preorganization of the amides and the steric hindrance of the motif. The chain cappers studied are monotopic derivatives of BTA, modified by partial N-methylation of the amides or by positioning of a bulky cyclotriveratrylene cage on one face of the BTA unit. This study not only clarifies the interplay between structural variations and supramolecular interactions, but it also highlights the necessity to combine orthogonal characterization methods, spectroscopy and light scattering, to elucidate the structures and compositions of supramolecular systems.  相似文献   
5.
A simple and efficient way to synthesize peptide-containing silicone materials is described. Silicone oils containing a chosen ratio of bioactive peptide sequences were prepared by acid-catalyzed copolymerization of dichlorodimethylsilane, hybrid dichloromethyl peptidosilane, and Si(vinyl)- or SiH-functionalized monomers. Functionalized silicone oils were first obtained and then, after hydrosilylation cross-linking, bioactive polydimethylsiloxane (PDMS)-based materials were straightforwardly obtained. The introduction of an antibacterial peptide yielded PDMS materials showing activity against Staphylococcus aureus. PDMS containing RGD ligands showed improved cell-adhesion properties. This generic method was fully compatible with the stability of peptides and thus opened the way to the synthesis of a wide range of biologically active silicones.  相似文献   
6.
A family of HY zeolite‐supported cationic organoiridium carbonyl complexes was formed by reaction of Ir(CO)2(acac) (acac=acetylacetonate) to form supported Ir(CO)2 complexes, which were treated at 298 K and 1 atm with flowing gas‐phase reactants, including C2H4, H2, 12CO, 13CO, and D2O. Mass spectrometry was used to identify effluent gases, and infrared and X‐ray absorption spectroscopies were used to characterize the supported species, with the results bolstered by DFT calculations. Because the support is crystalline and presents a nearly uniform array of bonding sites for the iridium species, these were characterized by a high degree of uniformity, which allowed a precise determination of the species involved in the replacement, for example, of one CO ligand of each Ir(CO)2 complex with ethylene. The supported species include the following: Ir(CO)2, Ir(CO)(C2H4)2, Ir(CO)(C2H4), Ir(CO)(C2H5), and (tentatively) Ir(CO)(H). The data determine a reaction network involving all of these species.  相似文献   
7.
Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the CuI‐catalyzed alkyne–azide cycloaddition and its strain‐promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site‐specific manner and recognized by antibody binding to demonstrate the proof‐of‐concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.  相似文献   
8.
The recognition properties of heteroditopic hemicryptophane hosts towards anions, cations, and neutral pairs, combining both cation–π and anion–π interaction sites, were investigated to probe the complexity of interfering weak intermolecular interactions. It is suggested from NMR experiments, and supported by CASSCF/CASPT2 calculations, that the binding constants of anions can be modulated by a factor of up to 100 by varying the fluorination sites on the electron‐poor aromatic rings. Interestingly, this subtle chemical modification can also reverse the sign of cooperativity in ion‐pair recognition. Wavefunction calculations highlight how short‐ and long‐range interactions interfere in this recognition process, suggesting that a disruption of anion–π interactions can occur in the presence of a co‐bound cation. Such molecules can be viewed as prototypes for examining complex processes controlled by the competition of weak interactions.  相似文献   
9.
Aluminum-pillared montmorillonites are useful materials for their application as catalysts, adsorbents and ceramic composites. The precursor is a pillared montmorillonite that is not thermally stabilized. The precursor preparation methods, textural properties and catalytic activity have been extensively investigated, but comparatively, studies concerning their thermal transformations at high temperature are limited. In this work, precursors were prepared using two types of montmorillonites, Cheto (Ch) and Wyoming (W), and using two different OH–Al polymer sources: hydrolyzed (H) and commercial (C) solutions. Structural and thermal transformations of the precursors with heating up to 1200 °C were determined by X-ray diffraction and thermogravimetric analysis. Thermal analysis of these precursors below 600 °C revealed the influence of OH–Al polymers from the two solutions. The major phases developed at 1200 °C from the original montmorillonites were mullite for W and cordierite for Ch. The content of these phases depended on the aluminum in the octahedral sheet of the pristine montmorillonites. Amorphous phase, cristobalite, spinel, sapphirine and others phases were also found. The intercalation of OH–Al polymers in montmorillonites caused an increase in amorphous content after treatment at 1030 °C; however, it favored mullite development above 1100 °C. Although total aluminum content of both W and Ch precursors was similar, the transformation to mullite was directly related to the octahedral aluminum/magnesium ratio. The phase composition of the products at 1200 °C was not dependent on the type of intercalated OH–Al polymers. The increase in mullite content of the thermally treated precursors contributes to its possible application as advanced ceramic products.  相似文献   
10.
Polymersomes have gained much interest within the biomedical field as drug delivery systems due to their ability to transport and protect cargo from the harsh environment inside the body. For an improved drug efficacy, control over cargo release is however also an important factor to take into account. An often employed method is to incorporate pH sensitive groups in the vesicle membrane, which induce disassembly and content release when the particles have reached a target site in the body with the appropriate pH, such as the acidic microenvironment of tumor tissue or the endosome. In this paper, biodegradable poly(ethylene glycol)-poly(caprolactone-gradient-trimethylene carbonate)-based polymeric vesicles have been developed with disassembly features at mild acidic conditions. Modifying the polymer backbone with imidazole moieties results in vesicle disassembly upon protonation due to the lowered pH. Furthermore, upon increasing the pH efficient re-assembly into vesicles is observed due to the switchable amphiphilic nature of the polymer. When this re-assembly process is conducted in presence of cargo, enhanced encapsulation is achieved. Furthermore, the potency of the polymeric system for future biomedical applications such as adjuvant delivery is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号