首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
化学   34篇
力学   1篇
数学   9篇
物理学   9篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有53条查询结果,搜索用时 325 毫秒
1.
This paper considers the problem of building a set of hybrid abstractions for affine systems in order to compute over approximations of the reachable space. Each abstraction is based on a decomposition of the continuous state space that is defined by hyperplanes generated by linear combinations of two vectors. The choice of these vectors is based on consideration of the dynamics of the system and uses, for example, the left eigenvectors of the matrix that defines these dynamics. We show that the reachability calculus can then be performed on a combination of such abstractions and how its accuracy depends on the choice of hyperplanes that define the decomposition.  相似文献   
2.
3.
Abstract— The bioluminescence emission spectrum of the light emitted from the elytra of certain poly-noid worms is similar to the fluorescence of the scales and to the fluorescence of flavins. In extracts the fluorescence is confined to the particulate fraction. Stimulation of bioluminescence from such particles was observed upon the addition of Fe2+ ions.  相似文献   
4.
Large single-ion magnetic anisotropy is observed in lithium nitride doped with iron. The iron sites are two-coordinate, putting iron doped lithium nitride amongst a growing number of two coordinate transition metal single-ion magnets (SIMs). Uniquely, the relaxation times to magnetisation reversal are over two orders of magnitude longer in iron doped lithium nitride than other 3d-metal SIMs, and comparable with high-performance lanthanide-based SIMs. To understand the origin of these enhanced magnetic properties a detailed characterisation of electronic structure is presented. Access to dopant electronic structure calls for atomic specific techniques, hence a combination of detailed single-crystal X-ray absorption and emission spectroscopies are applied. Together K-edge, L2,3-edge and Kβ X-ray spectroscopies probe local geometry and electronic structure, identifying iron doped lithium nitride to be a prototype, solid-state SIM, clean of stoichiometric vacancies where Fe lattice sites are geometrically equivalent. Extended X-ray absorption fine structure and angular dependent single-crystal X-ray absorption near edge spectroscopy measurements determine FeI dopant ions to be linearly coordinated, occupying a D6h symmetry pocket. The dopant engages in strong 3dπ-bonding, resulting in an exceptionally short Fe–N bond length (1.873(7) Å) and rigorous linearity. It is proposed that this structure protects dopant sites from Renner–Teller vibronic coupling and pseudo Jahn–Teller distortions, enhancing magnetic properties with respect to molecular-based linear complexes. The Fe ligand field is quantified by L2,3-edge XAS from which the energy reduction of 3dz2 due to strong 4s mixing is deduced. Quantification of magnetic anisotropy barriers in low concentration dopant sites is inhibited by many established methods, including far-infrared and neutron scattering. We deduce variable temperature L3-edge XAS can be applied to quantify the J = 7/2 magnetic anisotropy barrier, 34.80 meV (∼280 cm−1), that corresponds with Orbach relaxation via the first excited, MJ = ±5/2 doublet. The results demonstrate that dopant sites within solid-state host lattices could offer a viable alternative to rare-earth bulk magnets and high-performance SIMs, where the host matrix can be tailored to impose high symmetry and control lattice induced relaxation effects.

Taking advantage of synchrotron light source methods, we present the geometric and electronic structure of iron doped in lithium nitride.  相似文献   
5.
Analytical solutions of the diffusion equations to obtain the diffusant concentrations in the macro- and micropores which constitute the pore system of a zeolite bed are presented. The parameter which determines the influence of each pore type on the evolution of the adsorbate/adsorbant system towards the equilibrium state is described. Examples are given to illustrate a qualitative and quantitative study based on the curves obtained from these equations.  相似文献   
6.
7.
We use time-dependent density functional theory and Born-Oppenheimer molecular dynamics methods to investigate the fragmentation of doubly ionized uracil in gas phase. Different initial electronic excited states of the dication are obtained by removing electrons from different inner-shell orbitals of the neutral species. We show that shape-equivalent orbitals lead to very different fragmentation patterns revealing the importance of the intramolecular chemical environment. The results are in good agreement with ionion coincidence measurements of uracil collision with 100 keV protons.  相似文献   
8.
Surface-supported arrays of Fe(4)-type Single-Molecule Magnets retain a memory effect and are of current interest in the frame of molecule-based information storage and spintronics. To reveal the spin structure of [Fe(4)(L)(2)(dpm)(6)] (1) on Au, an isomorphous compound [Fe(3)Cr(L)(2)(dpm)(6)] was synthesized and structurally and magnetically characterized (H(3)L is tripodal ligand 11-(acetylthio)-2,2-bis(hydroxymethyl)undecan-1-ol and Hdpm is dipivaloylmethane). The new complex contains a central Cr(3+) ion and has a S = 6 ground state as opposed to S = 5 in 1. Low-temperature X-ray Magnetic Circular Dichroism studies at Fe- and Cr-L(2,3) edges revealed that the antiparallel alignment between Fe and Cr spins is preserved on surfaces. Moreover, the different Fe-L(2,3) spectral features found in the homo- and heterometallic species disclose the opposing contribution of the central Fe(3+) ion in the former compound, proving that its ferrimagnetic spin structure is retained on surfaces.  相似文献   
9.
The phase transition of dihexadecyl phosphate (DHP) bilayered disks has been studied using EPR spectroscopy. In the acid form of DHP, a phase transition temperature exists, that we have monitored through the spin-spin interaction between the nitroxide molecules at high concentration (8%) in DHP bilayers. This spin-spin interaction is due to the gathering of solutes in a fluid defect of the membrane: the border. The fluorescence quenching of two probes by the nitroxide stearic acids in DHP bilayers has been studied by stationary and time-resolved fluorescence measurements. The quenching process is mainly static. Both magnetic and fluorescent probes are localized in the periphery of the bilayered disks. An erratum to this article is available at .  相似文献   
10.
We study the chirality of ground-state alkali atoms in E and B fields, dressed with a circularly-polarized beam near-detuned ( less, similar1 GHz) from an E-field-assisted forbidden transition such as 7S-8S in Fr. We predict parity violating energy shifts of their sublevels, linear in E and the weak nuclear charge Q_(W). A dressing beam of 10 kW/cm(2) at 506 nm produces a shift of approximately 100 microHz at E=100 V/cm, B greater, similar50 mG which should be observable with approximately 10(4) Fr atoms confined in an optical dipole trap. We discuss optimal conditions, parameter reversals, and a calibration procedure to measure Q_(W)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号