首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   4篇
化学   23篇
力学   1篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  1989年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   
2.
The aim of this study is to characterize the non-isothermal crystallization of polyamide 6 bonded highly filled ferrites which were prepared by the melt extrusion. Especially, the effect of ferrite concentration and its surface property on the non-isothermal crystallization were investigated by means of differential scanning calorimetry. The highly filled ferrite particles acting as obstacles could severely hinder the motion of surrounding chain segments, which were irrespective of surface nature. The ferrite could be modified by silane and obtain a visually enhanced interaction with polymer matrix which evoked the heterogeneous nucleation. Increasing this enhanced interfacial area between polymer-particle can promote the heterogeneous nucleation. However, a strong interaction can slow the motion of surrounding chain segments of particles, thereby producing a competitive effect on the crystallization rate and crystallinity. The plot of crystallization activation energy against concentration also can evaluate dispersion performance of hydrophilic fillers within hydrophobic polymer.  相似文献   
3.
A new benzodithiophene (BDT)‐based polymer, poly(4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene vinylene) (PBDTV), was synthesized by Pd‐catalyzed Stille‐coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 × 10?3 cm2/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with Voc = 0.71 V, Isc = 6.46 mA/cm2, and FF = 0.57 under the illumination of AM1.5, 100 mW/cm2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1822–1829, 2010  相似文献   
4.
To achieve high open-circuit voltage (Voc) and low acceptor content, the molecular design of a small-molecule donor with low energy loss (Eloss) is very important for solution-processable organic solar cells (OSCs). Herein, we designed and synthesized a new coplanar A−D−A structured organic small-molecule semiconductor with non-fused ring structure π-bridge, namely B2TPR , and applied it as donor material in OSCs. Owing to the strong electron-withdrawing effect of the end group and the coplanar π-bridge, B2TPR exhibits a low-lying highest occupied molecular orbital and strong crystallinity. Furthermore, benefiting from the coplanar molecular skeleton, the high hole mobility, balanced charge transport and reduced recombination were achieved, leading to a high fill factor (FF). The OSCs based on B2TPR : PC71BM blend film (w/w=1 : 0.35) demonstrates a moderate power conversion efficiency (PCE) of 7.10 % with a remarkable Voc of 0.98 V and FF of 64 %, corresponding to a low fullerene content of 25.9 % and a low Eloss of 0.70 eV. These results demonstrate the great potential of small-molecule with structure of B2TPR for future low-cost organic photovoltaic applications.  相似文献   
5.
Meng  Yuan  Wu  Jingnan  Guo  Xia  Su  Wenyan  Zhu  Lei  Fang  Jin  Zhang  Zhi-Guo  Liu  Feng  Zhang  Maojie  Russell  Thomas P.  Li  Yongfang 《中国科学:化学(英文版)》2019,62(7):845-850
Herein,we fabricated all-polymer solar cells(all-PSCs)based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor,and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor.In addition to the complementary absorption and matching energy levels,the optimized blend films possess high cystallinity,predominantly face-on stacking,and a suitable phase separated morphology.With this active layer,the devices exhibited a high V_(oc)of 0.96 V,a superior J_(sc)of 17.1 mA cm~(-2),a fine fill factor(FF)of 68.2%,and thus an excellent power conversion efficiency(PCE)of 11.2%,which is the highest value reported to date for single-junction all-PSCs.Furthermore,the devices showed good storage stability.After 80 d of storage in the N_2-filled glovebox,the PCE still remained over 90%of the original value.Large-area devices(1.1 cm~2)also demonstrated an outstanding performance with a PCE of 9.2%,among the highest values for the reported large-area all-PSCs.These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.  相似文献   
6.
A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were developed. In addition to complementary absorption spectra(300–830 nm) with IT-4 F, the PM6 also has a deep HOMO(the highest occupied molecular) level(-5.50 e V), which will lower the open-circuit voltage(V_(oc)) sacrifice and reduce the E_(loss) of the IT-4 F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4 Fbased PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm~2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4 F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future.  相似文献   
7.
A new building block of benzo[1,2-b:4,5-b']difuran (BDF) was firstly designed and synthesized. The newly designed unit was applied for constructing a new photovoltaic low band gap polymer, PBDFDTBT, which exhibited promising power conversion efficiency of 5.0%.  相似文献   
8.
One new coumarin, 3,5-dihydroxy-7-O-α-L-rhamno pyranosyl-2H-chromen-2-one (1), was isolated from the whole plant of Sarcandra glabra. The structure was elucidated by spectroscopic methods. Our results indicated that 1 significantly inhibit nitric oxide (NO) production in LPS-induced RAW264.7 macrophages. RT-PCR analysis indicated it inhibited iNOS mRNA expression. In addition, Western blot analysis showed that 1 attenuated LPS-induced synthesis of iNOS protein in the macrophages. These results suggest that 1 could be potential anti-inflammatory agent by down-regulating iNOS expression.  相似文献   
9.
State-of-the-art organic solar cells(OSCs)often require the use of high-boiling point additive or post-treatment such as temperature annealing and solvent vapor annealing to achieve the best efficiency.However,additives are not desirable in largescale industrial printing process,while post-treatment also increases the production cost.In this article,we report highly efficient ternary OSCs based on PM6:BTP-Cl Br1:BTP-2O-4Cl-C12(weight ratio=1:1:0.2),with 16.68%power conversion efficiency(PCE)for as-cast device,relatively close to its annealed counterpart(17.19%).Apart from obvious energy tuning effect and complementary absorption spectra,the improved PCE of ternary device is mainly attributed to improved morphological properties including the more favorable materials miscibility,crystallinity,domain size and vertical phase separation,which endorse suppressed recombination.The result of this work provides understanding and guidance for high-performance as-cast OSCs through the ternary strategy.  相似文献   
10.
With the development of non-fullerene small-molecule acceptors, non-fullerene polymer solar cells (PSCs) have garnered increased attention due to their high performance. While photons are absorbed and converted to free charge carriers in the active layer, the donor and acceptor materials both play a critical role in determining the performance of PSCs. Among the various conjugated-polymer donor materials, polythiophene (PT) derivatives such as poly(3-hexylthiophene), have attracted considerable interest due to their high hole mobility and simple synthesis. However, there are limited studies on the applications of PT derivatives in non-fullerene PSCs. Fabrication of highly efficient non-fullerene PSCs utilizing PT derivatives as the donor is a challenging topic. In this study, a new PT derivative, poly[5, 5′-4, 4′-bis(2-butyloctylsulphanyl)-2, 2′-bithiophene-alt-5, 5′-4, 4′-difluoro-2, 2′-bithiophene] (PBSBT-2F), with alkylthio groups and fluorination was synthesized for use as the donor in non-fullerene PSC applications. The absorption spectra, electrochemical properties, molecular packing, and photovoltaic properties of PBSBT-2F were investigated and compared with those of poly(3-hexylthiophene) (P3HT). The polymer exhibited a wide bandgap of 1.82 eV, a deep highest occupied molecular orbital (HOMO) of -5.02 eV, and an ordered molecular packing structure. Following this observation, PSCs based on a blend of PBSBT-2F as the donor and 3, 9-bis(2-methylene-(3-(1, 1-dicyanomethylene)-indanone)-5, 5, 11, 11-tetrakis(4-hexylphenyl)-dithieno-[2, 3-d:2′, 3′-d′]-s-indaceno[1, 2-b:5, 6-b′]dithiophene (ITIC) as the acceptor were fabricated. The absorption spectra were collected and the energy levels were found to be well matched. These devices exhibited a power conversion efficiency (PCE) of 6.7% with an open-circuit voltage (VOC) of 0.75 V, a short-circuit current density (JSC) of 13.5 mA·cm-2, and a fill factor (FF) of 66.6%. These properties were superior to those of P3HT (1.2%) under the optimal conditions. This result indicates that PBSBT-2F is a promising donor material for non-fullerene PSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号