首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   3篇
化学   45篇
物理学   4篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
A simple, precise and accurate method is proposed for rapid determination of trace amounts of hydroxylamine based on the reaction of hydroxylamine with iodate in acidic media. The reaction of neutral red by the produced nitrite ion was used to monitor the reaction spectrophotometrically at 525 nm by a fixed time method. Hydroxylamine in the range of 0.0400-1.200 microg mL(-1) could be determined. The relative standard deviation for 10 determinations of 0.500 microg mL(-1) hydroxylamine was 1.81% and the limit of detection was 0.010 microg mL(-1). The proposed method was applied to the determination of hydroxylamine in water samples with satisfactory results.  相似文献   
2.
A new micelle-mediated phase preconcentration method for preconcentration of ultra-trace quantities of beryllium as a prior step to its determination by spectrophotometry has been developed. Chrome Azurol S (CAS) and cetyltrimethylammonium bromide (CTAB) were used as chelating agent and cationic surfactant, respectively. The method evaluates and eliminates the blank bias error present in such procedures using mean centering of ratio spectra. This procedure gives more accurate results than the traditional approach using absorbance values against reagent blank. The optimal extraction and reaction conditions were studied and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration and improvement factors) were obtained. Linearity was obeyed in the range of 0.9-18.0 ng mL−1 (1.00 × 10−7-2.00 × 10−6 mol L−1) of beryllium. The detection limit of the method is 0.51 ng mL−1 (5.66 × 10−8 mol L−1) of beryllium. The interference effect of some anions and cations was also tested. The method was applied to the determination of beryllium in spring water samples.  相似文献   
3.
A new method for the rapid and sensitive determination of trace quantities of thiocyanate based on its Landolt effect on the bromate-hydrochloric acid reaction was developed. The induction period of the reaction is proportional to the SCN concentration. The decolorization of methyl orange by the reaction products was used to monitor the reaction spectrophotometrically at 525 nm. We were able to determine thiocyanate in the range 2 × 10–7–4 × 10–5 M by this method. The relative standard deviation for 10 determinations of 1.5 × 10–6 M thiocyanate ion is 0.19% and the detection limit of the method was 7.00 × 10–8 M. The method was applied to the determination of thiocyanate in human blood serum and of saliva samples with satisfactory results.  相似文献   
4.
5.
6.
A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL−1 for the determination of Cd2+, Cu2+ and Hg2+, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd2+, Cu2+ and Hg2+. Furthermore, the present method was applied to the determination of Cd2+, Cu2+ and Hg2+ in water and some foodstuff samples.  相似文献   
7.
The potential removal and preconcentration of lead(II), cadmium(II), and chromium(III) ions from wastewaters were investigated and explored. Magnetite nanoparticles were chemically modified with p-nitro aniline. The aniline-coated magnetite nanoparticles (ANMNPs) were fully characterized by FT-IR, XRD, SEM, and TEM measurements. Batch studies were performed to address various experimental parameters for the removal and determination of these ions. ANMNPs showed high tendency to investigated metal ions, in this order: Cr(III) > Cd(II) > Pb(II), owing to the strong contribution of surface loaded aniline. The potential applications of ANMNPs adsorbent for removal and preconcentration of Pb(II), Cr(III), and Cd(II) from wastewaters as well as drinking tap water samples were successfully accomplished giving recovery values of (98–101 %), without any noticeable interference of the wastewater or drinking tap water matrices.  相似文献   
8.
Journal of Solid State Electrochemistry - The increasing efforts devoted to fabricating electrochromic (EC) devices have motivated a lot of studies to develop new EC materials. Herein, we introduce...  相似文献   
9.
The mean centering of ratio kinetic profiles method was used for the simultaneous determination of binary mixtures of Ni(II) and Zn(II) in water samples, without prior separation steps. The method is based on the difference in the rate of the reaction of Ni(II) and Zn(II) with xylenol orange at pH 5.3. The method allows rapid and accurate determination of Ni(II) and Zn(II). The analytical characteristics of the methods for the simultaneous determination of binary mixtures of Ni(II) and Zn(II) were calculated. The linear range was 0.025‐2.400 μg mL?1 and 0.025‐2.20 μg mL?1 for Zn(II) and Ni(II), respectively. Interference effects of common anions and cations were studied, and the method was successfully applied to the simultaneous determination of Zn(II) and Ni(II) in water samples.  相似文献   
10.
A novel and sensitive extraction procedure using maghemite nanoparticles (γ-Fe2O3) modified with sodium dodecyl sulfate (SDS), as an efficient solid phase, was developed for removal, preconcentration and spectrophotometric determination of trace amounts of malachite green (MG) and leuco-malachite green (LMG). Combination of nanoparticle adsorption and easily magnetic separation was used to extraction and desorption of MG and LMG. The adsorption capacity was evaluated using both the Langmuir and Freundlich adsorption isotherm models. Maghemite nanoparticles were prepared by co-precipitation method and their surfaces were modified by SDS. The size and properties of the produced maghemite nanoparticles was determined by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and BET analysis. MG and LMG became adsorbed at pH 3.0. LMG was oxidized to MG by adsorption on maghemite nanoparticles. The adsorbed MG was then desorbed and determined spectrophotometrically. The calibration graph was linear in the range 0.50-250.00 ng mL−1 of MG and LMG with a correlation coefficient of 0.9991. The detection limit of the method for determination of MG was 0.28 ng mL−1 and the relative standard deviation (R.S.D.) for 10.00 and 50.00 ng mL−1 of malachite green was 1.60% (n = 3) and 0.86% (= 5), respectively. A preconcentration factor of 50 was achieved in this method. The Langmuir adsorption capacity (qmax) was found to be 227.3 mg g−1 of the adsorbent. The method was applied to the determination of MG in fish farming water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号