首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   16篇
化学   274篇
力学   2篇
数学   20篇
物理学   24篇
  2023年   11篇
  2022年   5篇
  2021年   19篇
  2020年   9篇
  2019年   18篇
  2018年   4篇
  2017年   11篇
  2016年   11篇
  2015年   15篇
  2014年   18篇
  2013年   14篇
  2012年   28篇
  2011年   20篇
  2010年   12篇
  2009年   17篇
  2008年   34篇
  2007年   18篇
  2006年   8篇
  2005年   11篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  1997年   2篇
  1928年   2篇
  1923年   1篇
  1920年   2篇
  1919年   2篇
  1913年   1篇
  1912年   1篇
  1911年   2篇
  1909年   2篇
  1904年   2篇
排序方式: 共有320条查询结果,搜索用时 265 毫秒
1.
A series of cis-cis-triaminocyclohexane Zn(II) complex-anthraquinone intercalator conjugates, designed in such a way to allow their easy synthesis and modification, have been investigated as hydrolytic cleaving agents for plasmid DNA. The ligand structure comprises a triaminocyclohexane platform linked by means of alkyl spacers of different length (from C(4) to C(8)) to the anthraquinone group which may intercalate the DNA. At a concentration of 5 microM, the complex of the derivative with a C(8) alkyl spacer induces the hydrolytic stand scission of supercoiled DNA with a rate of 4.6 x 10(-6) s(-1) at pH 7 and 37 degrees C. The conjugation of the metal complex with the anthraquinone group leads to a 15-fold increase of the cleavage efficiency when compared with the anthraquinone lacking Zn-triaminocyclohexane complex. The straightforward synthetic procedure employed, allowing a systematic change of the spacer length, made possible to gain more insight on the role of the intercalating group in determining the reactivity of the systems. Comparison of the reactivity of the different complexes shows a remarkable increase of the DNA cleaving efficiency with the length of the spacer. In the case of too-short spacers, the advantages due to the increased DNA affinity are canceled due to the incorrect positioning of the reactive group, thus leading to cleavage inhibition.  相似文献   
2.
The coordinating ability of the ligands 3,4-toluenediamine-N,N,N',N'-tetraacetate (3,4-TDTA), o-phenylenediamine-N,N,N',N'-tetraacetate (o-PhDTA), and 4-chloro-1,2-phenylenediamine-N,N,N',N'-tetraacetate (4-Cl-o-PhDTA) (H4L acids) toward lead(II) is studied by potentiometry (25 degrees C, I = 0.5 mol x dm(-3) in NaClO4), UV-vis spectrophotometry, and 207Pb NMR spectrometry. The stability constants of the complex species formed were determined. X-ray diffraction structural analysis of the complex [Pb4(mu-3,4-TDTA)4(H2O)2]*4H2O (1) revealed that 1 has a 2-D structure. The layers are built up by the polymerization of centrosymmetric [Pb4L2(H2O)2] tetranuclear units. The neutral layers have the aromatic rings of the ligands pointing to the periphery, whereas the metallic ions are located in the central part of the layers. In compound 1, two types of six-coordinate lead(II) environments are produced. The Pb(1) is coordinated to two nitrogen atoms and four carboxylate oxygens from the ligand, whereas Pb(2) has an O6 trigonally distorted octahedral surrounding. The lead(II) ion is surrounded by five carboxylate oxygens and a water molecule. The carboxylate oxygens belong to four different ligands that are also joined to four other Pb(1) ions. The selective uptake of lead(II) was analyzed by means of chemical speciation diagrams as well as the so-called conditional or effective formation constants K(Pb)eff. The results indicate that, in competition with other ligands that are strong complexing agents for lead(II), our ligands are better sequestering agents in acidic media.  相似文献   
3.
4.
5.
6.
Manganese-based nanostructured contrast agents (CAs) entered the field of medical diagnosis through magnetic resonance imaging (MRI) some years ago. Although some of these Mn-based CAs behave as classic T1 contrast enhancers in the same way as clinical Gd-based molecules do, a new type of Mn nanomaterials have been developed to improve MRI sensitivity and potentially gather new functional information from tissues by using traditional T1 contrast enhanced MRI. These nanomaterials have been designed to respond to biological environments, mainly to pH and redox potential variations. In many cases, the differences in signal generation in these responsive Mn-based nanostructures come from intrinsic changes in the magnetic properties of Mn cations depending on their oxidation state. In other cases, no changes in the nature of Mn take place, but rather the nanomaterial as a whole responds to the change in the environment through different mechanisms, including changes in integrity and hydration state. This review focusses on the chemistry and MR performance of these responsive Mn-based nanomaterials.  相似文献   
7.
8.
The effect of electron-withdrawing (EW) and electron-releasing (ER) substituents on the 31P NMR chemical shifts and the structural parameters of a series of tris-(p-X-aryl)selenophosphates is reported in this article. Similarly to O-aryl phosphates and O-aryl thiophosphates, EW groups attached to aromatic rings induce a shielding effect on the 31P NMR signal. After a detailed experimental and theoretical analysis, we confirmed that the selenium atom is the main part responsible for the charge density transfer toward phosphorus through a back-bonding effect. The obtained 1JP-Se values for the complete series agree with this observation.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   
9.
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L?1 and 9 μg L?1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L?1), and coefficients of variation of 7 % and 5 % (n?=?5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Figure
?  相似文献   
10.
The controlled assembly of well-defined planar nanoclusters from molecular precursors is synthetically challenging and often plagued by the predominant formation of 3D-structures and nanoparticles. Herein, we report planar iron hydride nanoclusters from reactions of main group element hydrides with iron(II) bis(hexamethyldisilazide). The structures and properties of isolated Fe4, Fe6, and Fe7 nanoplatelets and calculated intermediates enable an unprecedented insight into the underlying building principle and growth mechanism of iron clusters, metal monolayers, and nanoparticles.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号