首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The MRI contrast agents (CAs) have been routinely used for detecting tumors at early stages. Currently, the most used CAs in MRI are gadolinium (Gd3+) complexes. However, these CAs can be toxic to the body. Thus, this work proposes Ni2+ complexes ([Ni(ACAC)2(H2O)2], [Ni(TEA)]2+) as promising CAs. For the theoretical prediction, molecular dynamics simulations were carried out and the conformations were selected by the optimal wavelet signal compression algorithm method. The T1 and T2 values were obtained directly by means of the spectral density. Our findings showed that the Ni2+ complexes can be promising CAs in MRI.  相似文献   

2.
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are supremely important techniques with numerous applications in almost all branches of science. However, until recently, NMR methodology was limited by the time constant T1 for the decay of nuclear spin magnetization through contact with the thermal molecular environment. Long‐lived states, which are correlated quantum states of multiple nuclei, have decay time constants that may exceed T1 by large factors. Here we demonstrate a nuclear long‐lived state comprising two 13C nuclei with a lifetime exceeding one hour in room‐temperature solution, which is around 50 times longer than T1. This behavior is well‐predicted by a combination of quantum theory, molecular dynamics, and quantum chemistry. Such ultra‐long‐lived states are expected to be useful for the transport and application of nuclear hyperpolarization, which leads to NMR and MRI signals enhanced by up to five orders of magnitude.  相似文献   

3.
A laser temperature‐jump technique is used to probe the impact of sodium halides on the temperature‐dependent switching kinetics and thermodynamics of poly(N‐isopropylacrylamide) brushes. An analysis on the basis of a two‐state model reveals van't Hoff enthalpy and entropy changes. Sodium halides increase the endothermicity and the entropic gain of the switching process below and above Tc following the Hofmeister series: NaCl > NaBr > NaI. In contrast, enthalpic and entropic changes at Tc remain virtually unaffected. This provides an unprecedented insight into the underlying switching energetics of this classic stimuli‐responsive polymer. Because of its model character, these results represent an essential reference on the way to unpuzzle the molecular driving forces of the Hofmeister effect.  相似文献   

4.
用离子交换法制备了Mn2+交换的NaY分子筛MnNaY, 用红外光谱(IR)和X射线粉末衍射(XRD)等方法进行了表征. 研究了Mn2+含量为3.2%的样品在酸性水溶液中的稳定性和离子交换选择性. 弛豫时间测量和体内磁共振成像实验表明其弛豫效率变化范围为4.9~9.7 mmol•L•s-1, 高于目前临床所用造影剂Gd-DTPA, 对胃部MRI信号具有良好的增强效果. 它是比较好的潜在口服胃肠道造影剂.  相似文献   

5.
A novel, radical responsive MRI contrast agent based on a gadolinium chelate conjugated to a liposome through a disulfide linker was synthesized, with the aim of pursuing the in vivo mapping of radicals. The liposome was prepared by incorporating a thiol‐activated phospholipid, which was subsequently reacted with a gadolinium chelate containing a free thiol group. The long reorientational motion of the supramolecular adduct endows the paramagnetic agent with a relaxivity significantly higher than that of the free complex. The disulfide bond represents a radical‐sensitive moiety and a large decrease in contrast efficacy (T1 relaxivity) is shown upon its cleavage. A preliminary assessment of the system was made by means of in vitro gamma‐irradiation and thiol–disulfide bond exchange with dithiothreitol. Both methods showed a clear dose‐dependent decrease in T1‐relaxivity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Parahydrogen induced polarization was employed to prepare a relatively long‐lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ~0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low‐field MRI to preserve the initial correlated state with a much longer decay time TLLSS=(4.7±0.5) s. While the direct detection at low‐magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin‐lock induced crossing (SLIC) at this low magnetic field transforms the long‐lived correlated state into an observable nuclear magnetization suitable for MRI with sub‐millimeter and sub‐second spatial and temporal resolution, respectively. Propane is a non‐toxic gas, and therefore, these results potentially enable low‐cost high‐resolution high‐speed MRI of gases for functional imaging of lungs and other applications.  相似文献   

7.
MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper‐free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self‐assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4‐targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor‐bearing mice demonstrated the signal‐enhancing ability of these ‘smart’ self‐assembling nanomaterials.  相似文献   

8.
Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca2+ levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca2+ in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca2+‐sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca2+ in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd3+‐DO3A (DO3A=1,4,7‐tris(carboxymethyl)‐1,4,7,10‐tetraazacyclododecane) coupled to a Ca2+ chelator o‐amino phenol‐N,N,O‐triacetate (APTRA). The agents are designed to sense Ca2+ present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2–0.8 mM . The determined dissociation constant of the CAs to Ca2+ falls in the range required to sense and report changes in extracellular Ca2+ levels followed by an increase in neural activity. In buffer, with the addition of Ca2+ the increase in relaxivity ranged from 100–157 %, the highest ever known for any T1‐based Ca2+‐sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb3+ analogues, nuclear magnetic relaxation dispersion (NMRD), and 17O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca2+ addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration.  相似文献   

9.
Manganese-rich layered oxide cathodes of sodium-ion batteries (SIBs) are extremely promising for large-scale energy storage owing to their high capacities and cost effectiveness, while the Jahn–Teller (J–T) distortion and low operating potential of Mn redox largely hinder their practical applications. Herein, we reveal that annealing in argon rather than conventional air is a universal strategy to comprehensively upgrade the Na-storage performance of Mn-based oxide cathodes. Bulk oxygen vacancies are introduced via this method, leading to reduced Mn valence, lowered Mn 3d-orbital energy level, and formation of the new-concept Mn domains. As a result, the energy density of the model P2-Na0.75Mg0.25Mn0.75O2 cathode increases by ≈50 % benefiting from the improved specific capacity and operating potential of Mn redox. The Mn domains can disrupt the cooperative J–T distortion, greatly promoting the cycling stability. This exciting finding opens a new avenue towards high-performance Mn-based oxide cathodes for SIBs.  相似文献   

10.
Magnetic resonance imaging (MRI) has become a prominent non– or low–invasive imaging technique, providing high–resolution, three–dimensional images as well as physiological information about tissues. Low–molecular–weight Gd–MRI contrast agents (CAs), such as Gd–DTPA (DTPA: diethylenetriaminepentaacetic acid), are commonly used in the clinical diagnosis, while macromolecular Gd–MRI CAs have several advantages over low–molecular–weight Gd–MRI CAs, which help minimize the dose of CAs and the risk of side effects. Accordingly, we developed chiral dendrimer Gd–MRI CAs, which showed high r1 values. The association constant values (Ka) of S–isomeric dendrimer CAs to bovine serum albumin (BSA) were higher than those of R–isomeric dendrimer CAs. Besides, based on a totally new concept, we developed 13C/15N–enriched multiple–resonance NMR/MRI probes, which realized highly selective observation of the probes and analysis of metabolic reactions of interest. This account summarizes our recent study on developing both chiral dendrimer Gd–MRI CAs, and self–traceable 13C/15N–enriched phosphorylcholine polymer probes for early detection of tumors.  相似文献   

11.
将具有良好生物膜穿透性的异烟肼(INH)和Gd-DO3A偶联,合成了小分子MRI造影剂Gd-DO3A-INH;利用脉冲电转染技术标记间充质干细胞,有效提高了进入细胞的Gd-DO3A-INH浓度,并诱导部分游离态Gd-DO3A-INH在细胞质中自组装成纳米粒子。细胞样品的TEM观察到细胞内形成了Gd-DO3A-INH纳米粒子;细胞传代实验和体外MRI揭示了2种不同状态的Gd-DO3A-INH对细胞水质子弛豫速率的影响机制,以及细胞传代过程中细胞内2种不同状态Gd-DO3A-INH的浓度涨落引起的MRI造影效果的变化机制。  相似文献   

12.
Magnetic resonance imaging(MRI) has been extensively used in clinical diagnosis and currently over 30% MRI runs are performed in the presence of contrast agents. However, commercially available contrast agents originated from small molecules typically exhibit relatively low relaxivities and insufficient circulation time. Therefore, there is a long pursuit to develop new contrast agents with high relaxivities to discriminate pathological tissues from normal ones. Compared with small molecule MRI contrast agents, the incorporation of small molecule contrast agents into macromolecular scaffolds allows for constructing macromolecular MRI contrast agents, remarkably elevating the relaxivities due in part to increased rotational correlation time(τR). Moreover, if the macromolecular scaffolds are responsive to external stimuli, the MRI signals could be selectively switched on at the desired sites(e.g., pathological tissues), further intensifying the imaging contrast. In this feature article, we outline the recent achievements in the fabrication of stimuli-responsive macromolecular MRI contrast agents. Specifically, macromolecular contrast agents being responsive to acidic p H, redox potentials, and other stimuli including photoirradiation, pathogens, and salt concentration are discussed. These smart contrast agents could affect either longitudinal(T1) or transverse(T2) relaxation times of water protons or other nuclei(e.g.,19 F), exhibiting enhanced signals in pathological tissues yet suppressed signals in normal ones and displaying promising potentials in in vitro and in vivo MRI applications.  相似文献   

13.
As a proof of concept, we demonstrate in this preliminary study that 3O2 could be used as magnetic Contrast Agent (CA) to monitor photodynamic treatments (PDT). In this purpose, and using a well-studied Photo-Sensitizer (PS) from our team ( Ruteg ), we highlighted that the combined action of the PS and irradiation led to significant changes in T1 (and R1) values of the protons of the water molecules. We assume that with these conclusive results using relaxometric measurements, transposition to Magnetic Resonance Imaging (MRI) in pertinent conditions (oxygen concentration, magnetic field) should be achievable.  相似文献   

14.
《Solid State Sciences》2004,6(5):419-431
We present a systematic and thorough structural study of the double perovskite series Sr2Fe0.75T0.25MoO6 (T=Sc, Ti, V, Cr, Mn, Fe, Co) by means of high resolution neutron diffraction as a function of temperature. The results have been complemented with room-temperature X-ray diffraction, magnetotransport and magnetisation measurements. Our study reveals the exceptionally strong influence of the 3d dopant on both long-range magnetic order (TC) and structural transition to a low-temperature tetragonal phase (TS). A decoupling of both magnetic and structural behaviour has been found in all cases except for T=Cr and Fe, ruling out a simple magnetostructural effect. A third transition (Ttetra) where the system becomes metrically cubic has been found and its nonequivalence to TS investigated in detail. In the case of T=Sc, Mn, a further symmetry reduction to a low-temperature monoclinic structure has been detected. The obtained results are discussed in terms of the size and valence state of the dopant, and correlated with the magnetic and electrical transport properties.  相似文献   

15.
We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM−1s−1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.  相似文献   

16.
The development of biodegradable inorganic nanoparticles with a tumor microenvironment‐activated therapeutic mode of action is urgently needed for precision cancer medicine. Herein, the synthesis of ultrathin lanthanide nanoscrolls (Gd2O3 NSs) is reported, which biodegrade upon encountering the tumor microenvironment. The Gd2O3 NSs showed highly controlled magnetic properties, which enabled their high‐resolution magnetic resonance imaging (MRI). Importantly, Gd2O3 NSs degrade in a pH‐responsive manner and selectively penetrate tumor tissue, enabling the targeted release of anti‐cancer drugs. Gd2O3 NSs can be efficiently loaded with an anti‐cancer drug (DOX, 80 %) and significantly inhibit tumor growth with negligible cellular and tissue toxicity both in vitro and in vivo. This study may provide a novel strategy to design tumor microenvironment‐responsive inorganic nanomaterials for biocompatible bioimaging and biodegradation‐enhanced cancer therapy.  相似文献   

17.
The synthesis, crystal structure, and magnetic properties of a [MnIII3MnII3‐O)(mbp)3(OAc)3] · 4H2O ( 1 ) [H2mbp = 2‐(1H‐benzimidazol‐2‐yl)‐2‐ methylpropane‐1,3‐diol] cluster are reported herein. Mn ions in compound 1 have a tetrahedron topology. Solid‐state direct current and alternating current magnetic susceptibility measurements on compound 1 reveal a ground state with ST = 7/2 as well as the probable single‐molecule magnetic behavior.  相似文献   

18.
The growing interest in magnetic resonance imaging (MRI) for assessing regional lung function relies on the use of nuclear spin hyperpolarized gas as a contrast agent. The long gas-phase lifetimes of hyperpolarized 129Xe make this inhalable contrast agent acceptable for clinical research today despite limitations such as high cost, low throughput of production and challenges of 129Xe imaging on clinical MRI scanners, which are normally equipped with proton detection only. We report on low-cost and high-throughput preparation of proton-hyperpolarized diethyl ether, which can be potentially employed for pulmonary imaging with a nontoxic, simple, and sensitive overall strategy using proton detection commonly available on all clinical MRI scanners. Diethyl ether is hyperpolarized by pairwise parahydrogen addition to vinyl ethyl ether and characterized by 1H NMR spectroscopy. Proton polarization levels exceeding 8 % are achieved at near complete chemical conversion within seconds, causing the activation of radio amplification by stimulated emission radiation (RASER) throughout detection. Although gas-phase T1 relaxation of hyperpolarized diethyl ether (at partial pressure of 0.5 bar) is very efficient, with T1 of ca. 1.2 second, we demonstrate that, at low magnetic fields, the use of long-lived singlet states created via pairwise parahydrogen addition extends the relaxation decay by approximately threefold, paving the way to bioimaging applications and beyond.  相似文献   

19.
Binary eutectic mixtures of early lanthanide metals and late transition metals have been explored as media for crystal growth of new intermetallic phases. A large family of R6T13−xAlxMy phases (R=La or Nd; T=Fe or Mn; M=main group elements) with the La6Co11Ga3 structure type can be crystallized from La/Ni and Nd/Fe eutectics. The tetragonal structure of these compounds features slabs of transition metal atoms capped with mixed T/Al sites and separated by layers of lanthanide ions. The growth of large crystals of the lanthanum analogs allows for the study of the anisotropic magnetic properties of the transition metal slabs. For La6Fe13−xAlxMy analogs, these order antiferromagnetically with TN strongly dependent on the Fe/Al ratio on the mixed sites. Growth of Mn analogs is reported for the first time; the transition metal slabs in La6(Mn/Ni)10Al3 phases order ferromagnetically with a TC of 200 K.  相似文献   

20.
The development of biodegradable inorganic nanoparticles with a tumor microenvironment‐activated therapeutic mode of action is urgently needed for precision cancer medicine. Herein, the synthesis of ultrathin lanthanide nanoscrolls (Gd2O3 NSs) is reported, which biodegrade upon encountering the tumor microenvironment. The Gd2O3 NSs showed highly controlled magnetic properties, which enabled their high‐resolution magnetic resonance imaging (MRI). Importantly, Gd2O3 NSs degrade in a pH‐responsive manner and selectively penetrate tumor tissue, enabling the targeted release of anti‐cancer drugs. Gd2O3 NSs can be efficiently loaded with an anti‐cancer drug (DOX, 80 %) and significantly inhibit tumor growth with negligible cellular and tissue toxicity both in vitro and in vivo. This study may provide a novel strategy to design tumor microenvironment‐responsive inorganic nanomaterials for biocompatible bioimaging and biodegradation‐enhanced cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号