首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
化学   9篇
物理学   8篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   
2.
Many fluorescence immunoassays have indifferent limits of detection because of the background signals from biological samples. Scattered light contributes to this background, but can be eliminated by exciting conventional fluorescent labels via chemiluminescence reactions involving bis(2,4,6-trichlorophenyl)oxalate. This reaction, whose rate can be controlled, is conveniently used in a flow injection system with a luminometer as a detector. Such a system is applied to study fluorescein- and fluorescamine-labelled species at concentrations as low as 10?11 M (ca. 0.5 pg in a 100 μl sample). The effects of antibodies on the luminescence signals from labelled antigens are discussed.  相似文献   
3.
A new series of highly functionalized 1,5‐benzodiazepine derivatives 5a–x have been synthesized from 3‐[(1E)‐N‐(2‐aminophenyl) ethanimidoyl]‐4‐hydroxyl‐2H‐chromen‐2‐one 3a–c and pyrazole aldehyde 4a–h using catalytic amount of triflouro acetic acid under microwave irradiation. The main significant of the present procedure is shorter reaction time, easy work up procedure, and excellent yield with high purity. The structures of all the compounds were established on the basis of their IR, NMR, and mass spectral data and have been screened for their antimicrobial activity and antifungal activity.  相似文献   
4.
Magnetite particles of different diameters were synthesized by chemical co-precipitation technique and the same are dispersed in dodecane to prepare a magnetic fluid. The results of X-ray diffraction, magnetization measurements, ac susceptibility and viscosity measurements are analyzed and discussed in the text.  相似文献   
5.
Electron spin resonance (ESR) spectra of magnetic fluids involving polydispersed Zn(0.5)Fe(0. 5)Fe(2)O(4) (FZ5) and Zn(0.7)Fe(0. 3)Fe(2)O(4) (FZ7) nanomagnetic particles are scanned from 4.2 to 300K. The FZ7 fluid exhibits certain distinct features below 40K which are different from FZ5 fluid. These include (i) an isotropic shift in resonance field in zero-field-cooled ESR study, (ii) deviation of resonance field from sin(2)theta behavior (where theta is the angle between axis of the particle and field) in field cooled (FC) sample and (iii) abrupt increase in anisotropy field for FC sample. The results are analyzed in light of the core-shell model for nanomagnetic particles.  相似文献   
6.
Direct measurements of individual head-related transfer functions (HRTFs) with a probe microphone at the eardrum are unpleasant, risky, and unreliable and therefore have not been widely used. Instead, the HRTFs are commonly measured from the blocked ear canal entrance, which excludes the effects of the individual ear canals and eardrums. This paper presents a method that allows obtaining individually correct magnitude frequency responses of HRTFs at the eardrum from pressure-velocity (PU) measurements at the ear canal entrance with a miniature PU sensor. The HRTFs of 25 test subjects with nine directions of sound incidence were estimated using real anechoic measurements and an energy-based estimation method. To validate the approach, measurements were also conducted with probe microphones near the eardrums as well as at blocked ear canal entrances. Comparisons between the different methods show that the method presented is a valid and reliable technique for obtaining magnitude frequency responses of HRTFs. The HRTF filters designed using the PU measurements are also shown to yield more correct frequency responses at the eardrum than the filters designed using measurements from the blocked ear canal entrance.  相似文献   
7.
Zero field cooled dc-magnetization measurements of monodispersed Mn0.5Zn0.5Fe2O4 nanoparticles dispersed in kerosene exhibit two transitions at low temperatures. These transitions correspond to (i) the superparamagnetic to blocked superparamagnetic and (ii) the blocked superparamagnetic to surface spin-glass like/quantum superparamagnetic state upon lowering the temperature. The existence of a disorder surface is confirmed by recording small-angle neutron scattering data below and above the Curie temperature. Magnetic relaxation analysis shows a plateau at low temperature (below 5 K) with a slight minimum at 3 K, which is a characteristic of the surface spin-glass-like state. This is analyzed considering the energy distribution n(E)∼1/E. The existence of surface disorder dominates at low temperature and mimics the transition from superparamagnetic to quantum superparamagnetic states.  相似文献   
8.
9.
In a blend, the interfacial interaction between the component phases can be effectively utilized to bring about homogeneous mixing and unique performances. While in conventional blends, preserving the morphology of the melt mixed state is unfeasible because of the strong thermodynamic tendency of the components to phase separate, herein, we report the intermolecular interaction of two hydrogen bonded polymers such as a barrier polymer poly(ethylene-co-vinyl alcohol) (EVOH) with an ionic polymer in their blends, which work symbiotically to achieve the desirable characteristics. We demonstrate the creation of a unique ellipsoid microfibrilliar morphology and melt exfoliation of one polymer in the blends through intermolecular interaction and achieve high oxygen barrier characteristics. Scanning thermal microscopy and scanning electron microscopy investigations confirm the presence of such unique morphology. The interfacial interaction and formation of interphase was evident from the local thermal analysis results combined with photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). PA-FTIR confirms the chemical nature of the interaction, while the differential scanning calorimetry results indicate modification of the EVOH phase by the ionomer. The shift of Tg and broadening of the tan delta curve is evident from dynamic mechanical analysis confirming the interaction of the blend components. The blend B(60) with microfibrillar morphology shows fourfold drop in oxygen permeability indicating the role of interfacial interaction and desired morphology.  相似文献   
10.
Magnetically induced diffraction patterns by micron sized magnetic spheres dispersed in a ferrofluid disappear at a certain critical magnetic field. This critical field is found to depend on the concentration of the ferrofluid and on the volume of the magnetic spheres. We attribute this effect to the zero forward scattering by magnetic spheres as predicted by Kerker, Wang, and Giles [J. Opt. Soc. Am. 73, 765 (1983)]. We suggest that such a dispersion can be used to study the optical analogues of localization of electrons in condensed matter, the Hall effect, and the anisotropic diffusion, etc. The combination of the micron sized magnetic spheres and the ferrofluid will also be useful to design magnetically tunable photonic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号