首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
化学   46篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  1978年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
Structural Chemistry - Carbon force fields are widely used for obtaining structural properties of carbon nanomaterials. We evaluate the performance of a wide range of carbon force fields for...  相似文献   
2.
During a respiratory burst the enzyme myeloperoxidase generates significant amounts of hypohalous acids (HOX, X?=?Cl and Br) in order to inflict oxidative damage upon invading pathogens. However, excessive production of these potent oxidants is associated with numerous inflammatory diseases. It has been suggested that the endogenous antioxidant carnosine is an effective HOCl scavenger. Recent computational and experimental studies suggested that an intramolecular Cl+ transfer from the imidazole ring to the terminal amine might play an important role in the antioxidant activity of carnosine. Based on high-level ab initio calculations, we propose a similar reaction mechanism for the intramolecular Br+ transfer in carnosine. These results suggest that carnosine may be an effective HOBr scavenger. On the basis of the proposed reaction mechanism, we proceed to design systems that share similar structural features to carnosine but with enhanced HOX scavenging capabilities for X?=?Cl and Br. We find that (i) elongating the β-alanyl-glycyl side chain by one carbon reduces the reaction barriers by up to 44%, and (ii) substituting the imidazole ring with strong electron-donating groups reduces the reaction barriers by similar amounts. We also show that the above structural and electronic effects are largely additive. In an antioxidant candidate that involves both of these effects the reaction barriers are reduced by 71%.  相似文献   
3.
Crotonaldehyde, a common environmental pollutant and product of endogenous lipid peroxidation, reacts with guanine to form DNA adducts with pronounced genotoxicity and mutagenicity. Here, we explore the molecular mechanism of this adduct formation using double-hybrid density functional theory methods. The reaction can be envisaged to occur in a two-step fashion via an aza-Michael addition leading to an intermediate ring-open adduct followed by a cyclization reaction giving the mutagenic ring-closed adduct. We find that (i) a 1,2-type addition is favored over a 1,4-type addition for the aza-Michael addition, and (ii) an initial tautomerization of the guanine moiety in the resulting ring-open adduct significantly reduces the barrier toward cyclization compared to the direct cyclization of the ring-open adduct in its keto-form. Overall, the aza-Michael addition is found to be rate-determining. We further find that participation of a catalytic water molecule significantly reduces the energy barriers of both the addition and cyclization reaction. © 2018 Wiley Periodicals, Inc.  相似文献   
4.
5.
The effect of substituents on the strength of N-X (X = H, F, and Cl) bonds has been investigated using the high-level W2w thermochemical protocol. The substituents have been selected to be representative of the key functional groups that are likely to be of biological, synthetic, or industrial importance for these systems. We interpreted the effects through the calculation of relative N-X bond dissociation energies (BDE) or radical stabilization energies (RSE(NX)). The BDE and RSE(NX) values depend on stabilizing/destabilizing effects in both the reactant molecule and the product radical of the dissociation reactions. To assist us in the analysis of the substituent effects, a number of additional thermochemical quantities have been introduced, including molecule stabilization energies (MSE(NX)). We find that the RSE(NH) values are (a) increased by electron-donating alkyl substituents or the vinyl substituent, (b) increased in imines, and (c) decreased by electron-withdrawing substituents such as CF(3) and carbonyl moieties or through protonation. A different picture emerges when considering the RSE(NF) and RSE(NCl) values because of the electronegativities of the halogen atoms. The RSE(NX)s differ from the RSE(NH) values by an amount related to the stabilization of the N-halogenated molecules and given by MSE(NX). We find that substituents that stabilize/destabilize the radicals also tend to stabilize/destabilize the N-halogenated molecules. As a result, N-F- and N-Cl-containing molecules that include alkyl substituents or correspond to imines are generally associated with RSE(NF) and RSE(NCl) values that are less positive or more negative than the corresponding RSE(NH). In contrast, N-F- and N-Cl-containing molecules that include electron-withdrawing substituents or are protonated are generally associated with RSE(NF) and RSE(NCl) values that are more positive or less negative than the corresponding RSE(NH).  相似文献   
6.
Smart polymers are special kinds of polymeric molecules that respond to external stimuli. We have developed a novel smart polymer designed to sequentially disassemble into its building blocks upon initiation by a triggering event at the polymer head. The polymer structure is based on a polyurethane backbone that disassembles through a domino-like, 1,6-elimination and decarboxylation reactions. We synthesized a self-immolative polymer that amplifies a single cleavage reaction into multiple release of fluorogenic molecules and confirmed the head-to-tail disassembly concept. These polymers can be used to prepare highly sensitive molecular sensors with large signal-to-noise ratios. The sensors should be useful for the detection of a wide range of biological and chemical activities through use of the appropriate trigger at the polymer head.  相似文献   
7.
The notoriously small X 3Pi-a 1Sigma+ excitation energy of the BN diatomic has been calculated using high-order coupled cluster methods. Convergence has been established in both the one-particle basis set and the coupled cluster expansion. Explicit inclusion of connected quadruple excitations T4 is required for even semiquantitative agreement with the limit value, while connected quintuple excitations T5 still have an effect of about 60 cm(-1). Still higher excitations only account for about 10 cm(-1). Inclusion of inner-shell correlation further reduces Te by about 60 cm(-1) at the CCSDT, and 85 cm(-1) at the CCSDTQ level. Our best estimate, Te = 183+/-40 cm(-1), is in excellent agreement with earlier calculations and experiment, albeit with a smaller (and conservative) uncertainty. The dissociation energy of BN(X 3Pi) is De = 105.74+/-0.16 kcal/mol and D0 = 103.57+/-0.16 kcal/mol.  相似文献   
8.
The reaction of the cationic (PNP)Ir(I)(cyclooctene) complex (1) (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) with 2-butanone or 3-pentanone results in the selective, quantitative activation of a beta C-H bond, yielding O,C-chelated complexes. Calculations show that the selectivity is both kinetically (because of steric reasons in the rate determingin step (RDS)) and thermodynamically controlled, the latter as a result of carbonyl oxygen coordination in the product. The RDS is formation of the eta2-C,H intermediates from the complexed ketone intermediates. Water has a strong influence on the regioselectivity, and in its presence, reaction of 1 with 2-butanone gives also the alpha terminal C-H activation product. Computational studies suggest that water can stabilize the terminal alpha C-H activation product by hydrogen bonding, forming a six-membered ring with the ketone, as experimentally observed in the X-ray structure of the acetonyl hydride aqua complex.  相似文献   
9.
We have recently proposed and demonstrated an approach that enables the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra within a single scan. A promising application opened up by this new accelerated form of data acquisition concerns the possibility of monitoring in real time the chemical nature of analytes subject to a continuous flow. The present paper illustrates such potential, with the real-time acquisition of a series of 2D 1H NMR spectra arising from a mixture of compounds subject to a continuous liquid chromatography (LC) separation. This real-time 2D NMR identification of chemicals eluted minutes apart under usual LC-NMR conditions differs from the way in which LC-2D NMR has hitherto been carried out, which relies on stopped-flow modes of operations whereby fractions are first collected and then subject to individual, aliquot-by-aliquot analyses. The real-time LC-2D NMR experiment hereby introduced can be implemented in a straightforward manner using modern commercial LC-NMR hardware, thus opening up immediate possibilities in high-throughput characterizations of complex molecules.  相似文献   
10.
Clean endocyclic C-O bond cleavage has been achieved in the reactions of 5-membered phosphate triesters with various nucleophiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号