首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2390篇
  免费   117篇
  国内免费   46篇
化学   1556篇
晶体学   18篇
力学   95篇
综合类   1篇
数学   345篇
物理学   538篇
  2023年   18篇
  2022年   13篇
  2021年   28篇
  2020年   55篇
  2019年   46篇
  2018年   40篇
  2017年   20篇
  2016年   66篇
  2015年   47篇
  2014年   70篇
  2013年   108篇
  2012年   151篇
  2011年   149篇
  2010年   103篇
  2009年   91篇
  2008年   153篇
  2007年   115篇
  2006年   147篇
  2005年   133篇
  2004年   104篇
  2003年   93篇
  2002年   71篇
  2001年   56篇
  2000年   44篇
  1999年   32篇
  1998年   22篇
  1997年   12篇
  1996年   34篇
  1995年   28篇
  1994年   30篇
  1993年   34篇
  1992年   34篇
  1991年   31篇
  1990年   22篇
  1989年   24篇
  1987年   19篇
  1986年   22篇
  1985年   27篇
  1984年   37篇
  1983年   17篇
  1982年   19篇
  1981年   11篇
  1980年   17篇
  1979年   19篇
  1978年   24篇
  1977年   23篇
  1976年   19篇
  1975年   10篇
  1974年   14篇
  1973年   18篇
排序方式: 共有2553条查询结果,搜索用时 15 毫秒
1.

A Savitzky–Golay filtering for smoothing and peak search written in Python is presented in this paper alongside its applications in the list-mode digital data acquisition dual gamma–gamma coincidence bismuth germanate (BGO) detector. The study has demonstrated that the software provides a reliable and effective way to quantify trace amounts of 22Na and 7Be in aerosol samples collected at Resolute Bay, Canada with a critical limit of 3 mBq and 5 Bq respectively for a 20 h counting interval, which are believed to be the inherent limitations of the dual-BGO system.

  相似文献   
2.
Manganese, the third most abundant transition-metal element after iron and titanium, has recently been demonstrated to be an effective homogeneous catalyst in numerous reactions. Herein, the preparation of silica-supported MnII sites is reported using Surface Organometallic Chemistry (SOMC), combined with tailored thermolytic molecular precursors approach based on Mn2[OSi(OtBu)3]4 and Mn{N(SiMe3)2}2⋅THF. These supported MnII sites, free of organic ligands, efficiently catalyze numerous reactions: hydroboration and hydrosilylation of ketones and aldehydes as well as the transesterification of industrially relevant substrates.  相似文献   
3.
A series of newly synthesized dicyanoplatinum(II) 2,2′‐bipyridine complexes exhibits self‐assembly properties in solution after the incorporation of the l ‐valine amino units appended with various hydrophobic motifs. These l ‐valine‐derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature‐dependent studies. On the other hand, systematic transformation from less uniform aggregates to well‐defined fibrous and rod‐like structures via Pt???Pt and π–π stacking interactions has also been observed in the mixed‐solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy.  相似文献   
4.
A series of air‐stable spiro‐fused ladder‐type boron(III) compounds has been designed, synthesized, and the electrochemistry and photophysical behavior have been characterized. By simply varying the substituents on the pyridine ring and extending the π‐conjugation of the spiro framework, the emission color of these compounds can be easily fine‐tuned spanning the visible spectrum from blue to red. All compounds exhibit a broad and structureless emission band across the entire visible region, assigned as an intramolecular charge‐transfer transition originating from the thiophene of the spiro framework to the pyridine‐borane moieties. In addition, these compounds demonstrate high photoluminescence quantum yields of up to 0.81 in dichloromethane solution and 0.86 in doped thin films. Some of the compounds have also been employed as emissive materials, in which solution‐processed organic light‐emitting devices (OLEDs) with tunable emission colors spanning the visible spectrum from blue, green to red have been realized, demonstrating the potential applications of these boron compounds in OLEDs.  相似文献   
5.
We report a new class of ruthenium(II) polypyridine complexes functionalized with a nitrone group as phosphorogenic bioorthogonal probes. These complexes were very weakly emissive owing to rapid C=N isomerization of the nitrone moiety, but exhibited significant emission enhancement upon strain‐promoted alkyne–nitrone cycloaddition (SPANC) reaction with bicyclo[6.1.0]nonyne (BCN)‐modified substrates. The modification of nitrone with a dicationic ruthenium(II) polypyridine unit at the α‐C‐position and a phenyl ring at the N‐position led to remarkably accelerated reaction kinetics, which are substantially greater (up to ≈278 fold) than those of other acyclic nitrone–BCN systems. Interestingly, the complexes achieved specific cell membrane/cytosol staining upon specific labeling of an exogenous substrate, BCN‐modified decane (BCN‐C10), in live cells. Importantly, the in situ generation of the more lipophilic isoxazoline adduct in the cytoplasm resulted in increased cytotoxicity, highlighting a novel approach to apply the SPANC labeling technique in drug activation.  相似文献   
6.
Letters in Mathematical Physics - Let L be an even (positive definite) lattice and $$g\in O(L)$$. In this article, we prove that the orbifold vertex operator algebra $$V_{L}^{{\hat{g}}}$$ has...  相似文献   
7.
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidiser is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources are not resolved and the heat release is assumed spatially uniform, is solved via conventional finite difference techniques. Second, a discrete source model, wherein the heat diffusion from individual sources is modelled via superposition of the Green's function of each source, is employed to examine the influence of the random, discrete nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert gas surrounding the reactive medium are considered as the loss mechanisms. Both cylindrical and rectangular (slab) geometries of the reactive medium are considered, and the flame speed is measured as a function of the diameter and thickness of the domains, respectively. In the continuum model with inert gas confinement, a universal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete source model, as the time scale of heat release of the sources is made small compared to the interparticle diffusion time, the geometric scaling between cylinders and slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime to propagate in thinner slabs than predicted by continuum scaling is attributed to the flame being able to exploit local fluctuations in concentration across the slab to sustain propagation. As the heat release time of the sources is increased, the discrete source model reverts back to results consistent with the continuum model. Implications of these results for experiments are discussed.  相似文献   
8.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
9.
Previously, master equation (ME) simulations using semiclassical transition state theory (SCTST) and high-accuracy extrapolated ab initio thermochemistry (HEAT) predicted rate constants in excellent agreement with published experimental data over a wide range of pressure and temperatures ≳250 K, but the agreement was not as good at lower temperatures. Possible reasons for this reduced performance are investigated by (a) critically evaluating the published experimental data and by investigating; (b) three distinct ME treatments of angular momentum, including one that is exact at the zero- and infinite-pressure limits; (c) a hindered-rotor model for HOCO that implicitly includes the cis- and trans-conformers; (d) possible empirical adjustments of the thermochemistry; (e) possible empirical adjustments to an imaginary frequency controlling tunneling; (f) including or neglecting the prereaction complex PRC1; and (g) its possible bimolecular reactions. Improvements include better approximations to factors in SCTST and using the Hill and van Vleck treatment of angular momentum coupling. Evaluation of literature data does not reveal any specific shortcomings, but the stated uncertainties may be underestimated. All ME treatments give excellent fits to experimental data at T ≥ 250 K, but the discrepancy at T < 250 K persists. Note that each ME model requires individual empirical energy transfer parameters. Thermochemical adjustments were unable to match the experimental H/D kinetic isotope effects. Adjusting an imaginary frequency can achieve good fits, but the adjustments are unacceptably large. Whether PRC1 and its possible bimolecular reactions are included had little effect. We conclude that none of the adjustments is an improvement over the unadjusted theory. Note that only one set of experimental data exists in the regime of the discrepancy with theory, and data for DO + CO are scanty.  相似文献   
10.
The photoinitiation abilities of three 1,2-diketones [i.e., acenaphthenequinone ( ANPQ ), aceanthrenequinone ( AATQ ), and 9,10-phenanthrenequinone ( PANQ )]-based photoinitiating systems [PISs, with additives such as iodonium salt, N-vinylcarbazole (NVK), tertiary amine, and phenacyl bromide (R-Br)] for cationic photopolymerization and free-radical photopolymerization under the irradiation of ultraviolet (UV; 392 nm) or blue (455 nm) light-emitting diode (LED) bulb are investigated. All 1,2-diketones studied exhibit ground state absorption that match with the emission spectra of UV (392 nm) or blue LED (455 nm) better than that of the well-known blue-light-sensitive photoinitiator camphorquinone (CQ). In particular, AATQ /iodonium salt/NVK can show high photoinitiating ability (with epoxide conversion yield >70%) under the UV light irradiation due to the effect of NVK. In addition, 1,2-diketone/iodonium salt (and optional NVK) systems are capable of initiating free-radical photopolymerization of methacrylates, with conversions of 50–58%. Furthermore, some 1,2-diketone/tertiary amine (and optional R-Br) combinations are found to demonstrate high efficiency to initiate free-radical photopolymerization, and 71% of methacrylate conversion can be achieved with PANQ /tertiary amine/R-Br PIS. Some 1,2-ketone-based PISs can even exhibit higher efficiency than the CQ-based systems. The photochemical mechanism of the radical generation from the 1,2-diketone-based PISs is investigated and found to be consistent with the related photopolymerization efficiency. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 792–802  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号