首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of four‐coordinate donor‐acceptor fluoroboron‐containing thermally activated delayed fluorescence (TADF) compounds bearing a tridentate 2,2′‐(pyridine‐2,6‐diyl)diphenolate (dppy) ligand has been successfully designed and synthesized. Upon varying the donor moieties from carbazole to 10H‐spiro[acridine‐9,9′‐fluorene] to 9,9‐dimethyl‐9,10‐dihydroacridine, these boron derivatives exhibit a wide range of emission colors spanning from blue to yellow with a large spectral shift of 2746 cm?1, with high PLQYs of up to 96 % in the doped thin film. Notably, vacuum‐deposited organic light‐emitting devices (OLEDs) made with these boron compounds demonstrate high performances with the best current efficiencies of 55.7 cd A?1, power efficiencies of 58.4 lm W?1 and external quantum efficiencies of 18.0 %. More importantly, long operational stabilities of the green‐emitting OLEDs based on 2 with half‐lifetimes of up to 12 733 hours at an initial luminance of 100 cd m?2 have been realized. This work represents for the first time the design and synthesis of tridentate dppy‐chelating four‐coordinate boron TADF compounds for long operational stabilities, suggesting great promises for the development of stable boron‐containing TADF emitters.  相似文献   

2.
Through‐space charge transfer polymers (TSCT polymers) that contain a non‐conjugated polystyrene backbone and spatially separated donor and acceptor units for solution‐processed OLEDs with full‐color and white emission is reported. By tuning the charge transfer strength between donor and acceptors with different electron‐accepting ability, emission color spanning from deep blue to red can be achieved. By incorporating two kinds of donor/acceptor pairs in one polymer to create duplex through‐space charge‐transfer channels, blue and yellow emission can be simultaneously obtained to realize white electroluminescence from a single polymer. The TSCT polymers exhibit thermally activated delayed fluorescence effect with delayed‐component lifetimes in range of 0.36–1.98 μs, and unexpected aggregation‐induced emission (emission intensity enhancement of up to 117 from solution to aggregation state).  相似文献   

3.
Significant efforts have been made to develop high‐efficiency organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange–red colors. However, efficient TADF materials with colors ranging from red, to deep‐red, to near‐infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA‐DCPP (TPA=triphenylamine; DCPP=2,3‐dicyanopyrazino phenanthrene) which has a small singlet–triplet splitting (ΔEST) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L′Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most‐efficient deep‐red/NIR phosphorescent OLEDs with similar electroluminescent spectra.  相似文献   

4.
《化学:亚洲杂志》2017,12(17):2189-2196
Blue organic light‐emitting diodes (OLEDs) are necessary for flat‐panel display technologies and lighting applications. To make more energy‐saving, low‐cost and long‐lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky‐blue emitters, 1,4,5‐triphenyl‐2‐(4‐(1,2,2‐triphenylvinyl)phenyl)‐1H‐imidazole (TPEI), 1‐(4‐methoxyphenyl)‐4,5‐diphenyl‐2‐(4‐(1,2,2‐triphenylvinyl)phenyl)‐1H‐imidazole (TPEMeOPhI) and 1‐phenyl‐2,4,5‐tris(4‐(1,2,2‐triphenylvinyl)phenyl)‐1H‐imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation‐induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non‐doped sky‐blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A−1, 2.70 lm W−1), 2.16 (4.33 cd A−1, 2.59 lm W−1) and 3.13 % (6.97 cd A−1, 4.74 lm W−1) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll‐off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI‐based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices.  相似文献   

5.
Substituents can induce dramatic changes in the photoluminescence properties of N,O‐chelated boron complexes. Specifically, the boron complexes of 2‐(benzothiazol‐2‐yl)phenols become bright deep blue‐ and orange‐red‐emitting materials depending on amino substituents at the 5‐ and 4‐positions of 2‐(benzothiazol‐2‐yl)phenol, respectively. Absorption and emission data show that the resulting boron complexes have little or small overlap between the absorption and emission spectra and, furthermore, X‐ray crystal structures for both the blue and orange‐red complexes indicate the absence of π–π stacking interaction in the crystal‐packing structures. These features endow the boron complexes with bright and strong photoluminescence in the solid state, which distinguishes itself from the typical boron complexes of dipyrromethenes (BODIPYs). A preliminary study indicates that the blue complexes have promising electro‐optical characteristics as dopant in an organic light‐emitting diode (OLED) device and show chromaticity close to an ideal deep blue. The substituent effects on the photoluminescent properties may be used to tune the desired emission wavelength of related boron or other metal complexes.  相似文献   

6.
New routes to ladder‐type phenylene materials 1 and 2 are described. The oligomers 1 and 2 , which possess a “3π‐2spiro” architecture, have been synthesized by using extended diketone derivatives 3 and 10 as key intermediates. The physicochemical properties of the new blue‐light emitter 2 were studied in detail and compared with those of the less‐extended 1 . Owing to the recent development of fluorenone derivatives and their corresponding more conjugated analogues as potential electron‐transport materials in organic light‐emitting diodes (OLEDs) and as n‐type materials for photovoltaic applications, we also report herein the thermal, optical and electrochemical behavior of the key intermediates, diketones 3 and 10 . Finally, the application of dispiro 2 as a new light‐emitting material in OLEDs is reported.  相似文献   

7.
A novel series of four sublimable cationic iridium(III) complexes have been prepared with 1,10‐phenanthroline derivatives as ancillary ligands and the same negative counter‐ion, tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, which has a large steric hindrance and widely dispersed charges, thereby increasing the ionic radii, reducing the electrostatic interaction, and thus improving the volatility. Their structural, photophysical, electrochemical, and thermal properties have been fully characterized. Upon excitation, these compounds show polychromic emission varying from green to orange in solution, which are blue‐shifted in the solid state to different extents due to π–π conjugate effects in the ancillary ligands and the resulting molecular aggregation. OLEDs fabricated by vacuum evaporation deposition demonstrated desirable device performance with high efficiency and brightness, exhibiting various electroluminescent colors dependent upon doping concentration.  相似文献   

8.
A new class of sky‐blue‐ to green‐emitting carbazolylgold(III) C^C^N complexes containing pyrazole or benzimidazole moieties has been successfully designed and synthesized. Through the judicious choice of the N‐heterocycles in the cyclometalating ligand and the tailor‐made carbazole moieties, maximum photoluminescence quantum yields of 0.52 and 0.39 have been realized in the green‐ and sky‐blue‐emitting complexes, respectively. Solution‐processed and vacuum‐deposited organic light‐emitting devices (OLEDs) based on the benzimidazole‐containing complexes have been prepared. The sky‐blue‐emitting device shows an emission peaking at 484 nm with a narrow full‐width at half‐maximum of 57 nm (2244 cm?1), demonstrating the potential of this class of complexes in the application of OLEDs with high color purity. In addition, high maximum external quantum efficiencies of 12.3 % and a long operational half‐lifetime of over 5300 h at 100 cd m?2 have been achieved in the vacuum‐deposited green‐emitting devices.  相似文献   

9.
《化学:亚洲杂志》2017,12(23):3069-3076
Typical π–π stacking and aggregation‐caused quenching could be suppressed in the film‐state by the spiro conformation molecular design in the field of organic light‐emitting diodes (OLEDs). Herein, a novel deep‐blue fluorescent material with spiro conformation, 1‐(4‐(tert ‐butyl)phenyl)‐2‐(4‐(10‐phenyl‐10H ‐spiro[acridine‐9,9′‐fluoren]‐2‐yl)phenyl)‐1H ‐phenanthro[9,10‐d ]imidazole ( SAF‐BPI ), was designed and synthesized. The compound consists of spiro‐acridine‐fluorene (SAF) as donor part and phenanthroimidazole (BPI) as acceptor part. Owing to the rigid SAF skeleton, this compound exhibits a high thermal stability with a glass transition temperature (T g) of 198 °C. The compound exhibits bipolar transporting characteristics demonstrated by the single‐carrier devices. The non‐doped OLEDs based on the SAF‐BPI as the emitting layer shows maximum emission at 448 nm, maximum luminance of 2122 cd m−2, maximum current efficiency (CE) of 3.97 cd A−1, and a maximum power efficiency of 2.08 lm W−1. The chromaticity coordinate is stable at (0.15, 0.10) at the voltage of 7–11 V. The device shows a slow efficiency roll‐off with CE of 3.35 and 2.85 cd A−1 at 100 and 1000 cd m−2, respectively.  相似文献   

10.
The development of efficient blue materials has been a continuous research topic in the field of organic light‐emitting diodes (OLEDs). In this paper, three aggregation‐induced emission enhancement active blue emitters, PIAnTPE, TPAAnTPE and CzAnTPE, are successfully synthesized by attaching a triphenylethylene unit and phenanthroimidazole/triphenylamine/carbazole moieties to the 9,10‐positions of anthracene, respectively. The three compounds exhibit good thermal stabilities, appropriate for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and display high photoluminescence quantum yields (PLQYs) of 65, 70 and 46 % in the solid state. Non‐doped blue devices using PIAnTPE, TPAAnTPE and CzAnTPE as the emitting layers show good electroluminescent performances, with the maximum external quantum efficiencies (EQEs) of 4.46, 4.13 and 4.04 %, respectively. More importantly, EQEs of all the three devices can be still retained when the luminescence reaches 1000 cd m?2, exhibiting quite small efficiency roll‐offs in the non‐doped OLEDs.  相似文献   

11.
A new class of fused heterocyclic tridentate ligand‐containing alkynylgold(III) complexes with tunable emission color has been successfully designed and synthesized. Structural modification of the σ‐donating fused heterocyclic alkynyl ligands, including substituted fluorene, carbazole, and triphenylamine, enables a large spectral shift of about 110 nm (ca. 3310 cm?1) that covers the green to red region to be realized with the same tridentate ligand‐containing alkynylgold(III) complexes in solid‐state thin films. Interestingly, the energy of the excimeric emission can be controlled by the rational design of the fused heterocyclic alkynyl ligands. Superior solution‐processable organic light‐emitting devices (OLEDs) with high external quantum efficiencies (EQEs) of 12.2, 13.5, 9.3, and 5.2 % were obtained with green, yellow, orange, and red emission. These high EQE values are comparable to those of the vacuum‐deposited OLEDs based on structurally related alkynylgold(III) complexes.  相似文献   

12.
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters.  相似文献   

13.
Helically chiral N,N,O,O‐boron chelated dipyrromethenes showed solution‐phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λem(max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5‐ortho‐phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|glum| up to 4.7 ×10?3) and fluorescence quantum yields (ΦF up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL‐based bioimaging.  相似文献   

14.
Polycyclic aromatic compounds containing fully unsaturated five‐membered ring(s) have been intensively studied because of their unique properties, which include high electron affinity and reactivity. Reported herein is an efficient route for the synthesis of tetrabenzo‐fused pyracylene, which comprises pyracylene and tetracene segments, using intramolecular oxidative C? H coupling. It was shown to possess high electron affinity and was found to undergo addition reactions with n‐butyllithium or benzyne. These reactions led to either a 1,4‐addition compound or triptycene‐type adduct with a curved or planar π‐system, respectively. Although these compounds exhibited similar sky‐blue emissions in a dilute solution, the emission band of the 1,4‐addition compound was significantly red‐shifted in the solid state and exhibited intense yellow emission attributable to the excimer, while the triptycene‐type adduct retained the intense blue color emission in the solid state.  相似文献   

15.
Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron‐accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor–acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky‐blue to green emission and high photoluminescence quantum yields of 87–100 % in host matrices. Organic light‐emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0–22.8 %, which originate from efficient up‐conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states.  相似文献   

16.
A series of luminescent platinum(II) complexes of tridentate 1,3‐bis(N‐alkylbenzimidazol‐2′‐yl)benzene (bzimb) ligands has been synthesized and characterized. One of these platinum(II) complexes has been structurally characterized by X‐ray crystallography. Their electrochemical, electronic absorption, and luminescence properties have been investigated. Computational studies have been performed on this class of complexes to elucidate the origin of their photophysical properties. Some of these complexes have been utilized in the fabrication of organic light‐emitting diodes (OLEDs) by using either vapor deposition or spin‐coating techniques. Chloroplatinum(II)? bzimb complexes that are functionalized at the 5‐position of the aryl ring, [Pt(R‐bzimb)Cl], not only show tunable emission color but also exhibit high current and external quantum efficiencies in OLEDs. Concentration‐dependent dual‐emissive behavior was observed in multilayer OLEDs upon the incorporation of pyrenyl ligand into the Pt(bzimb) system. Devices doped with low concentrations of the complexes gave rise to white‐light emission, thereby representing a unique class of small‐molecule, platinum(II)‐based white OLEDs.  相似文献   

17.
Synthetic strategies have been devised that allow the rational design and isolation of highly coloured boron dipyrromethene (BODIPY) dyes that absorb across much of the visible region. Each dye has an aryl polycycle (usually pyrene or perylene) connected to the central BODIPY core through a conjugated tether at the 3,5‐positions. Both mono‐ and difunctionalised derivatives are accessible, in certain cases containing both pyrene and perylene residues. For all new compounds, the photophysical properties have been recorded in solution at ambient temperature and in a glassy matrix at 77 K. The presence of the aryl polycycle(s) affects the absorption and emission maxima of the BODIPY nucleus, thereby confirming that these units are coupled electronically. Indeed, the band maxima and oscillator strengths depend on the conjugation length of the entire molecule, whereas there is no sign of fluorescence from the polycycle. As a consequence, the radiative rate constant tends to increase with each added appendage. The nature of the linkage (styryl, ethenyl, or ethynyl) also exerts an effect on the photophysical properties and, in particular, the absorption spectrum is perturbed in the region of the aryl polycycle. The perylene‐containing BODIPY derivatives absorb over a wide spectral range and emit in the far‐red region in almost quantitative yield. A notable exception to this generic behaviour is provided by the anthracenyl derivative, which exhibits charge‐transfer absorption and emission spectra in weakly polar media at ambient temperature. Regular BODIPY‐like behaviour is restored in a glassy matrix at 77 K. Overall, these new dyes represent an important addition to the range of strongly absorbing and emitting reagents that could be used as solar concentrators.  相似文献   

18.
A novel isoquinoline‐containing C^N^C ligand and its phosphorescent triphenylamine‐based alkynylgold(III) dendrimers have been synthesized. These alkynylgold(III) dendrimers serve as phosphorescent dopants in the fabrication of efficient solution‐processable organic light‐emitting devices (OLEDs). The photophysical, electrochemical, and electroluminescence properties were studied. A saturated red emission with CIE coordinates of (0.64, 0.36) and a high EQE value of 3.62 % were achieved. Unlike other red‐light‐emitting iridium(III) dendrimers, a low turn‐on voltage of less than 3 V and a reduced efficiency roll‐off at high current densities were observed; this can be accounted for by the enhanced carrier transporting ability and the relatively short lifetimes in the high‐generation dendrimers. This class of alkynylgold(III) dendrimers are promising candidates as phosphorescent dopants in the fabrication of solution‐processable OLEDs.  相似文献   

19.
Organic light‐emitting diodes (OLEDs) have been greatly developed in recent years owing to their abundant advantages for full‐color displays and general‐purpose lightings. Blue emitters not only provide one of the primary colors of the RGB (red, green and blue) display system to reduce the power consumption of OLEDs, but are able able to generate light of all colors, including blue, green, red, and white by energy transfer processes in devices. However, it remains a challenge to achieve high‐performance blue electroluminescence, especially for nondoped devices. In this paper, we report a blue light emitting molecule, DPAC‐AnPCN, which consists of 9,9‐diphenyl‐9,10‐dihydroacridine and p‐benzonitrile substituted anthracene moieties. The asymmetrically decoration on anthracene with different groups on its 9 and 10 positions combines the merits of the respective constructing units and endows DPAC‐AnPCN with pure blue emission, high solid‐state efficiency, good thermal stability and appropriate HOMO and LUMO energy levels. Furthermore, DPAC‐AnPCN can be applied in a nondoped device to effectively reduce the fabrication complexity and cost. The nondoped device exhibits pure blue electroluminescence (EL) locating at 464 nm with CIE coordinates of (0.15, 0.15). Moreover, it maintains high efficiency at relatively high luminescence. The maximum external quantum efficiency (EQE) reaches 6.04 % and still remains 5.31 % at the luminance of 1000 cd m?2 showing a very small efficiency roll‐off.  相似文献   

20.
In this study, a simplified route to synthesize soluble, spiro‐bridged ladder‐type poly(p‐phenylene)s (spiro‐LPPP) was developed. The new, simplified synthesis route for spiro‐LPPP involves two reaction steps: a single‐stranded precursor polymer containing diaryloylbenzene building blocks was obtained by the Suzuki reaction, followed by a subsequent twofold cyclization cascade using methanesulfonic acid to form the target spiro‐LPPP. Spiro‐LPPP shows a well‐defined chemical structure, high molecular weight (Mn of 17,500 g/mol with a polydispersity index of 2.0), excellent thermal stability (5% weight loss at 370 °C), and good solubility in common organic solvents. Spiro‐LPPP emits blue light (λmax,em = 455 nm) with the high solution PL quantum yield (94%). The spectral properties of spiro‐LPPP in the solid state are very similar to the solution properties, thus indicating a low degree of intermolecular aggregation. After annealing a thin film of spiro‐LPPP to 120 °C in air for 3 to 24 h, its emission spectrum is unchanged, reflecting excellent thermooxidative stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5137–5143, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号