首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2326篇
  免费   42篇
  国内免费   5篇
化学   1501篇
晶体学   5篇
力学   27篇
数学   494篇
物理学   346篇
  2020年   16篇
  2019年   17篇
  2018年   19篇
  2016年   36篇
  2015年   33篇
  2014年   36篇
  2013年   65篇
  2012年   65篇
  2011年   86篇
  2010年   52篇
  2009年   49篇
  2008年   68篇
  2007年   73篇
  2006年   68篇
  2005年   54篇
  2004年   70篇
  2003年   27篇
  2002年   27篇
  2001年   20篇
  2000年   15篇
  1997年   30篇
  1996年   39篇
  1995年   36篇
  1994年   38篇
  1993年   29篇
  1992年   29篇
  1991年   21篇
  1990年   37篇
  1989年   23篇
  1988年   27篇
  1987年   31篇
  1986年   17篇
  1985年   53篇
  1984年   43篇
  1983年   40篇
  1982年   19篇
  1981年   43篇
  1980年   39篇
  1979年   26篇
  1978年   39篇
  1977年   36篇
  1976年   26篇
  1975年   35篇
  1974年   32篇
  1973年   22篇
  1972年   17篇
  1971年   14篇
  1960年   19篇
  1958年   13篇
  1885年   15篇
排序方式: 共有2373条查询结果,搜索用时 156 毫秒
1.
In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d -enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.  相似文献   
2.
3.
Neutral [Ru(η6-arene)Cl2{Ph2P(CH2)3SPh-κP}] (arene = benzene, indane, 1,2,3,4-tetrahydronaphthalene: 2a, 2c and 2d) and cationic [Ru(η6-arene)Cl(Ph2P(CH2)3SPh-κPS)]X complexes (arene = mesitylene, 1,4-dihydronaphthalene; X = Cl: 3b, 3e; arene = benzene, mesitylene, indane, 1,2,3,4-tetrahydronaphthalene, and 1,4-dihydronaphthalene; X = PF6: 4a–4e) complexes were prepared and characterized by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy and also by single-crystal X-ray diffraction analyses. The stability of the complexes has been investigated in DMSO. Complexes have been assessed for their cytotoxic activity against 518A2, 8505C, A253, MCF-7 and SW480 cell lines. Generally, complexes exhibited activity in the lower micromolar range; moreover, they are found to be more active than cisplatin. For the most active ruthenium(II) complex, 4b, bearing mesitylene as ligand, the mechanism of action against 8505C cisplatin resistant cell line was determined. Complex 4b induced apoptosis accompanied by caspase activation.  相似文献   
4.
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (OH and H2O2). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.  相似文献   
5.
The synthesis and characterisation of the hexanuclear copper(II) carboxylate complex [Cu(O2CCHPhOC2H4OC2H4OCH3)2]6 ( 1 ) is described. Single‐crystal X‐ray structure analysis reveals that the copper(II) ions are arranged in a six‐membered ring which adopts a chair‐like conformation. The copper(II) ions are bridged by μ2‐ and μ3‐coordinating carboxylates. The magnetic behavior of 1 was measured between 2 and 300 K, revealing at low temperature a weak antiferromagnetic interaction. The χM(T) dependency was fitted mathematically with one coupling constant J1 and a paramagnetic impurity α.  相似文献   
6.
7.
8.
2,5‐Diferrocenyl‐1‐Ar‐1H‐phospholes 3 a – e (Ar=phenyl ( a ), ferrocenyl ( b ), mesityl ( c ), 2,4,6‐triphenylphenyl ( d ), and 2,4,6‐tri‐tert‐butylphenyl ( e )) have been prepared by reactions of ArPH2 ( 1 a – e ) with 1,4‐diferrocenyl butadiyne. Compounds 3 b – e have been structurally characterized by single‐crystal XRD analysis. Application of the sterically demanding 2,4,6‐tri‐tert‐butylphenyl group led to an increased flattening of the pyramidal phosphorus environment. The ferrocenyl units could be oxidized separately, with redox separations of 265 ( 3 b ), 295 ( 3 c ), 340 ( 3 d ), and 315 mV ( 3 e ) in [NnBu4][B(C6F5)4]; these values indicate substantial thermodynamic stability of the mixed‐valence radical cations. Monocationic [ 3 b ]+–[ 3 e ]+ show intervalence charge‐transfer absorptions between 4650 and 5050 cm?1 of moderate intensity and half‐height bandwidth. Compounds 3 c – e with bulky, electron‐rich substituents reveal a significant increase in electronic interactions compared with less demanding groups in 3 a and 3 b .  相似文献   
9.
Four new donor–acceptor triads (D–A–D) based on discotic and arylene mesogens have been synthesized by using Sonogashira coupling and cyclization reactions. This family of triads consists of two side‐on pending triphenylene mesogens, acting as the electron‐donating groups (D), laterally connected through short lipophilic spacers to a central perylenediimide (PI), benzo[ghi]perylenediimide (BI), or coronenediimide (CI) molecular unit, respectively, playing the role of the electron acceptor (A). All D–A–D triads self‐organize to form a lamello‐columnar oblique mesophase, with a highly segregated donor–acceptor (D–A) heterojunction organization, consequent to efficient molecular self‐sorting. The structure consists in the regular alternation of two disrupted rows of triphenylene columns and a continuous row of diimine species. High‐resolution STM images demonstrate that PI‐TP2 forms stable 2D self‐assembly nanostructures with some various degrees of regularity, whereas the other triads do not self‐organize into ordered architectures. The electron‐transport mobility of CI‐TP2, measured by time‐of‐flight at 200 °C in the mesophase, is one order of magnitude higher than the hole mobility. By means of this specific molecular designing idea, we realized and demonstrated for the first time the so‐called p–n heterojunction at the molecular level in which the electron‐rich triphenylene columns act as the hole transient pathways, and the coronenediimide stacks form the electron‐transport channels.  相似文献   
10.
Silicon analogues of the most prominent carbon nanostructures, namely, hollow spheroidals such as C60 and the fullerene family, have been unknown to date. Herein we show that discrete Si20 dodecahedra, stabilized by an endohedral guest and valence saturation, are accessible in preparative yields through a chloride‐induced disproportionation reaction of hexachlorodisilane in the presence of tri(n‐butyl)amine. X‐ray crystallography revealed that each silicon dodecahedron contains an endohedral chloride ion that imparts a net negative charge. Eight chloro substituents and twelve trichlorosilyl groups are attached to the surface of each cluster in a strictly regioregular arrangement, a thermodynamically preferred substitution pattern according to quantum‐chemical assessment. Our results demonstrate that the wet‐chemical self‐assembly of a complex, monodisperse Si nanostructure is possible under mild conditions starting from simple Si2 building blocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号