首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   18篇
  国内免费   1篇
化学   244篇
晶体学   6篇
力学   17篇
数学   37篇
物理学   72篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   12篇
  2019年   17篇
  2018年   13篇
  2017年   12篇
  2016年   28篇
  2015年   11篇
  2014年   13篇
  2013年   29篇
  2012年   31篇
  2011年   26篇
  2010年   38篇
  2009年   30篇
  2008年   35篇
  2007年   17篇
  2006年   13篇
  2005年   9篇
  2004年   9篇
  2003年   10篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1995年   2篇
  1985年   1篇
  1936年   1篇
排序方式: 共有376条查询结果,搜索用时 31 毫秒
1.
2.
Crystallography Reports - The title compound, C17H15NOS, crystallizes in the orthorhombic sp. gr. Pca21. Two molecules in the asymmetric unit have similar structure. Crystal structure contains weak...  相似文献   
3.
In this study, we describe the preparation and characterization of a new class of thermoset hybrid networks containing aliphatic polyester and polyhedral oligomeric silsesquioxanes (POSS). The copper‐free 1,3‐dipolar cycloaddition click reaction of internal alkyne functionalized aliphatic polyester and multifunctional azido POSS with different concentrations led to highly crosslinked thermoset networks. The click reactions performed under ambient conditions (i.e., in tetrahydrofuran at room temperature for 1 day) in the absence of any catalyst. The chemical composition of hybrid networks and homogenous distribution of POSS molecules were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy with energy dispersive spectroscopy. The swelling ratios of hybrid networks were commonly decreased by increasing POSS‐N3 content and by changing polar solvents to apolar solvents. Thermogravimetric analysis results demonstrated that the thermal stability of hybrid networks increased with higher POSS feeding ratio. Tensile tests were applied to evaluate the mechanical properties of hybrid networks. Compared to neat aliphatic polyester, the mechanical properties of hybrid networks significantly improved. For instance, the tensile strength were enhanced from 5 MPa to 19 MPa by increasing the concentration of azido functionalized POSS from 10 to 40. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2222–2227  相似文献   
4.
Synthesis and characterization of 4-{(E)-[(5-bromo-2-hydroxyphenyl)methylidene]amino}-N-carbamimidoylbenzene-1-sulfonamide(SA) and its composites with graphene(SA-GF) were performed. Compound SA and SA-GF were characterized by FTIR and 1H NMR. The GF dispersion in the composites was analyzed by means of scanning electron microscopy(SEM) for morphology. Thermal properties of SA and nanocomposites were investigated using differential thermal analysis(DTA) and thermogravimetric analysis(TGA). The optimum electrical conductivity of the new sulfonamide-based Schiff base was determined to be 1.78×10–5 S/cm at a frequency of 9923 Hz, an applied voltage of –19 V, a mass fraction of 9.38% for graphene loading using a central composite design in the response surface methodology. The significance of the selected parameters(frequency, voltage and GF amount) in the model was determined by the analysis of variance(ANOVA). The results showed that frequency and graphene loading represent important model terms and have considerable effects on the conductivity of SA.  相似文献   
5.
Some 1,3-dithiadiphosphetane 2,4-disulfides (X2P2S4, X: Fc, FcLR; X: CH3O?C6H4?, LR) were allowed to react with alcohols to obtain dithiophosphonic acids (X(OR)PS2H). These were converted to the corresponding ammonium salts. The salts were of the structures [Fc(OR)PS2]?[NH4]+, R: 3-methyl-1-butyl- for I; 1-phenyl-1-propyl- for II; 3-pentyl- for III; 3-phenyl-1-propyl- for IV and [CH3O?C6H4(OR)PS2]?[NH4]+, R: 3-methyl-1-butyl- for V and 1-phenyl-1-propyl- for VI. To the best of our knowledge, all the compounds except V were prepared for the first time.

The compounds synthesized were characterized by elemental analysis, NMR (1H, 13C, 31P), MS, FTIR, and Raman spectroscopies. Electrochemical behaviors of I–VI at disposable pencil graphite electrode (PGE) were investigated by using cyclic voltammetry (CV) and square-wave voltammetry (SWV). Adsorption and diffusion patterns of all the compounds on the PGE were also studied.

Two electroactive groups were identified in the compounds I–IV and only one in V and VI. The ferrocenyl groups of I-IV were oxidized at around 0.4 V. The same compounds display a second, more intense CV band at 0.8 V. The corresponding band for the compounds V–VI appears at around 0.6 V with a much weaker intensity. It is suggested that the ferrocenyl group introduced into the structures stabilizes the radical species formed as the product of the oxidation of the dithiophosphonato group.  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - A computational analysis has been performed to study the impact of magnetic field on entropy generation due to mixed convective nanofluid flow with top...  相似文献   
7.
Research on Chemical Intermediates - Palladium (II) complex with 4-tert-butylbenzoic hydrazide (TBBH)/triphenylphosphine (PPh3) ligands was successfully synthesized and characterized by X-ray,...  相似文献   
8.
A colorimetric Al3+ sensor based on fluorescence recovery of a conjugated copolymer-ATP complex is proposed. An optimized ratio of two polythiophene (PT) monomers is utilized to synthesize copolymer (CP) that yielded maximized colorimetric response for Al3+ in deionized (DI) and tap water. The electrostatic disassembly of CP-ATP upon addition of Al3+ led to an evident visual color change. The lowest concentration of Al3+ for naked eye observation is around 4 μM, which is below the threshold levels in drinking water according to European Economic Community (EEC) standard. Besides, the proposed assay showed a similar response to Al3+ in tap water. The proposed methodology showed selective and sensitive detection for Al3+ in analytically relevant concentration ranges without involving sophisticated instrumentation, illustrating the applicability for on-site drinking water monitoring.  相似文献   
9.
Alginate and chitosan are among the most common biopolyelectrolytes. Surfactants can be included in alginate and chitosan formulations in order to improve their physical and functional properties. In the present study, the effect of the anionic surfactant sodium dodecyl sulfate (SDS) on alginate‐chitosan polyelectrolyte multilayer (PEM) films is reported for the first time. Layer‐by‐layer deposition technique was employed to prepare the PEM samples and the samples were characterized by ellipsometry, X‐ray reflectivity, atomic force microscopy, and quartz crystal microbalance with dissipation. Incorporation of SDS into PEM formulations increased the film thickness and an increased adsorption behavior between alginate and chitosan layers are observed. Since the concentration of SDS was below its critical micelle concentration, no micelle formation was expected and hydrophobic‐hydrophobic interaction between alginate and SDS might be the main reason. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1798–1803  相似文献   
10.
We demonstrated the successful postfunctionalization of poly(oxanorbornene imide) (PONB) with two types of double bonds using sequential orthogonal reactions, nucleophilic thiol‐ene coupling via Michael addition and radical thiol‐ene click reactions. First, the synthesis of PONB with side chain acrylate groups is carried out via ring‐opening metathesis polymerization and nitroxide radical coupling reaction, respectively. Subsequently, the resulting polymer having two different orthogonal functionalities, main chain vinyl and side chain acrylate, is selectively modified via two sequential thiol‐ene click reactions, nucleophilic thiol‐ene coupling via Michael addition and photoinduced radical thiol‐ene. The orthogonal reactivity of two diverse double bonds, vinyl and acrylate functionalities, for the abovementioned consecutive thiol‐ene click reactions was first demonstrated on the model compound. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号