首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   0篇
化学   107篇
晶体学   2篇
力学   2篇
数学   4篇
物理学   46篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   11篇
  2012年   13篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   11篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   11篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1960年   2篇
  1920年   2篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
1.
The structure of neutron-rich beryllium isotopes has been investigated using different heavy-ion-induced transfer reactions. In neutron transfer reactions, the population of final states shows a strong sensitivity to the chosen core nucleus, i.e., the target nuclei 9Be or 10Be, respectively. Molecular rotational bands up to high excitation energies are observed with 9Be as the core due to its pronounced 2α-cluster structure, whereas only a few states at low excitation energies are populated with 10Be as the core. For 11Be, a detailed investigation has been performed for the three states at 3.41, 3.89, and 3.96 MeV, which resulted in the most probable spin-parity assignments 3/2+, 5/2?, and 3/2?, respectively. Furthermore, we have studied particle-hole states of 16C using the 13C(12C, 9C)16C reaction and found 14 previously unknown states. Using the 12C(12C, 9C)15C reaction, five new states were observed for 15C.  相似文献   
2.
In this work, an analysis of the parametric sensitivity of the overshoot in the concentration of the adsorbate in the adsorbed phase, which occurs under certain conditions during an ion-exchange adsorption process, is presented and used to suggest practical implications of the concentration overshoot phenomenon on operational policies and configurations of chromatographic columns and finite bath adsorption systems. The results presented in this work demonstrate and explain how the development of an overshoot in the concentration of the adsorbate in the adsorbed phase could be enhanced or suppressed by (i) varying the diffusion coefficient, D3, of the adsorbate relative to the diffusion coefficients, D1 and D2, of the cations and anions, respectively, of the background/buffer electrolyte, (ii) altering the initial surface charge density, delta0, of the charged adsorbent particles, (iii) varying the Debye length, lambda, and (iv) changing the initial concentration, Cd3(0), of the adsorbate in the bulk liquid of the finite bath. The influence of the pH and ionic strength, Iinfinity, of the liquid solution on the development of an overshoot in the concentration of the adsorbate in the adsorbed phase is also presented and discussed through the relationships of these parameters to delta0 and lambda, respectively. Furthermore, a detailed explanation of the effects of each parameter on the interplay between the diffusive and electrophoretic molar fluxes, as well as on the structure and functioning of the electrical double layer, which are responsible for the concentration overshoot phenomenon, is presented.  相似文献   
3.
Anodization of titanium in a fluorinated dimethyl sulfoxide (DMSO) and ethanol mixture electrolyte is investigated. The prepared anodic film has a highly ordered nanotube-array surface architecture. Using a 20 V anodization potential (vs Pt) nanotube arrays having an inner diameter of 60 nm and 40 nm wall thickness are formed. The overall length of the nanotube arrays is controlled by the duration of the anodization, with nanotubes appearing only after approximately 48 h; a 72 h anodization results in a nanotube array approximately 2.3 mum in length. The photoelectrochemical response of the nanotube-array photoelectrodes is studied using a 1 M KOH solution under both UV and visible (AM 1.5) illumination. Enhanced photocurrent density is observed for samples obtained in the organic electrolyte, with an UV photoconversion efficiency of 10.7%.  相似文献   
4.
Sixteen compounds containing the bicyclic moiety (3,8,10-trisubstituted 2,9-dioxo-5-thia-1,8-diazabicyclo[4.4.0]decane) were produced via solid-phase synthesis. Differing substitution at the 3- and 10-positions was used. These were analyzed using 2-D NMR techniques (ROESY) to determine the stereoselectivity of ring formation in the core heterocycle. Conformational analysis of the proposed transition state structure using Sybyl 6.8® was used to rationalize the stereochemical outcome of ring formation.  相似文献   
5.
6.
7.
The dipole polarizability of H2(B1Σu+) is computed using extended Gaussian basis sets and Hartree-Fock, multiconfiguration Hartree-Fock, and configuration interaction wavefunctions. Electron correlation contributions are found to be significant (≈ 25%) with the largest contribution arising from angular correlation. With a full CI wavefunction, the components of the dipole polarizability were computed to be (in au): α = 50 and α| = 257.  相似文献   
8.
A model that describes the diffusive and electrophoretic mass transport of the cation and anion species of a buffer electrolyte and of a charged adsorbate in the liquid film surrounding nonporous adsorbent particles in a finite bath adsorption system, in which adsorption of the charged adsorbate onto the charged surface of the nonporous particles occurs, is constructed and solved. The dynamic behavior of the mechanisms of this model explicitly demonstrates (a) the interplay between the diffusive and electrophoretic molar fluxes of the charged adsorbate and of the species of the buffer electrolyte in the liquid film surrounding the nonporous adsorbent particles, (b) the significant effect that the functioning of the electrical double layer has on the transport of the charged species and on the adsorption of the charged adsorbate, and (c) the substantial effect that the dynamic behavior of the surface charge density has on the functioning of the electrical double layer. It is found that at equilibrium, the value of the concentration of the charged adsorbate in the fluid layer adjacent to the surface of the adsorbent particles is significantly greater than the value of the concentration of the adsorbate in the finite bath, while, of course, the net molar flux of the charged adsorbate in the liquid film is equal to zero at equilibrium. This result is very different than that obtained from the conventional model that is currently used to describe the transport of a charged adsorbate in the liquid film for systems involving the adsorption of a charged adsorbate onto the charged surface of nonporous adsorbent particles; the conventional model (i) does not consider the existence of an electrical double layer, (ii) assumes that the transport of the charged adsorbate occurs only by diffusion in the liquid film, and (iii) causes at equilibrium the value of the charged adsorbate in the liquid layer adjacent to the surface of the particles to become equal to the value of the concentration of the charged adsorbate in the liquid of the finite bath. Furthermore, it was found that a maximum can occur in the dynamic behavior of the concentration of the adsorbate in the adsorbed phase when the value of the free molecular diffusion coefficient of the adsorbate is relatively large, because the increased magnitude of the synergistic interplay between the diffusive and electrophoretic molar fluxes of the adsorbate in the liquid film allows the adsorbate to accumulate (to be entrapped) in the liquid layer adjacent to the surface of the adsorbent particles faster than the concentrations of the electrolyte species, whose net molar fluxes are significantly hindered due to their opposing diffusive and electrophoretic molar fluxes, can adjust to account for the change in the surface charge density of the particles that arises from the adsorption of the charged adsorbate. The results presented in this work also have significant implications in finite bath adsorption systems involving the adsorption of a charged adsorbate onto the surface of the pores of charged porous adsorbent particles, because the diffusion and the electrophoretic migration of the charged solutes (cations, anions, and charged adsorbate) in the pores of the adsorbent particles will depend on the dynamic concentration profiles of the charged solutes in the liquid film surrounding the charged porous adsorbent particles. The results of the present work are also used to illustrate how the functioning of the electrical double layer could contribute to the development of inner radial humps (concentration rings) in the concentration of the adsorbate in the adsorbed phase of charged porous adsorbent particles.  相似文献   
9.
10.
The results obtained from the pore network model employed in this work, clearly show that the magnitudes of the intraparticle electroosmotic volumetric flow-rate, Qintrap, and velocity, (v(intrap,x)), in the pores of the charged porous silica particles considered in this study are greater than zero. The intraparticle Peclet number, Pe(intra, of a solute in these charged porous silica particles would be greater than zero, and, in fact, the magnitude of the intraparticle Peclet number, Pe(intrap), of lysozyme is greater than unity for all the values of the pore connectivity, nT, of the intraparticle pores and of the applied electric potential difference per unit length, Ex, along the axis of the capillary column considered in this work. Furthermore, the values of the intraparticle electroosmotic volumetric flow-rate, Qintrap, and velocity, (v(intrap,x)), as well as the magnitude of the pore diffusion coefficient, Dp, of the solute increase as the value of the pore connectivity, nT, of the intraparticle pores increases. The intraparticle electroosmotic flow can contribute significantly, if the appropriate chemistry is employed in the mobile liquid phase and in the charged porous particles, in (i) decreasing the intraparticle mass transfer resistance, (ii) decreasing the dispersive mass transfer effects, and (iii) increasing the intraparticle mass transfer rates so that high column efficiency and resolution can be obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号