首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
化学   42篇
力学   1篇
数学   1篇
物理学   11篇
  2019年   1篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1992年   3篇
排序方式: 共有55条查询结果,搜索用时 125 毫秒
1.
2.
In this paper the fabrication and electrical characterization of a silicon microreactor for high-temperature catalytic gas phase reactions, like Rh-catalyzed catalytic partial oxidation of methane into synthesis gas, is presented. The microreactor, realized with micromachining technologies, contains silicon nitride tubes that are suspended in a flow channel. These tubes contain metal thin films that heat the gas mixture in the channel and sense its temperature. The metal patterns are defined by using the channel geometry as a shadow mask. Furthermore, a new method to obtain Pt thin films with good adhesive properties, also at elevated temperatures, without adhesion metal is implemented in the fabrication process. Based on different experiments, it is concluded that the electrical behaviour at high temperatures of Pt thin films without adhesion layer is better than that of Pt/Ta films. Furthermore, it is found that the temperature coefficient of resistance (TCR) and the resistivity of the thin films are stable for up to tens of hours when the temperature-range during operation of the microreactor is below the so-called "burn-in" temperature. Experiments showed that the presented suspended-tube microreactors with heaters and temperature sensors of Pt thin films can be operated safely and in a stable way at temperatures up to 700 degrees C for over 20 h. This type of microreactor solves the electrical breakdown problem that was previously reported by us in flat-membrane microreactors that were operated at temperatures above 600 degrees C.  相似文献   
3.
The applicability of glass chips with powder-blasted microchannels for electrophoretic separations was examined, and the performance was compared to microchannels etched with hydrogen fluoride (HF), using bicarbonate buffer and rhodamine B and fluorescein as model compounds. The measured electroosmotic mobilities in all chips were comparable, with values of ca. 7 x 10(-4) cm(2) V(-1)s(-1). The effect of electrical field strength and detection length on the separation efficiency was monitored. It was found that the main source of dispersion is of the Taylor-Aris type, which was discussed in relation to channel roughness differences. Although in powder-blasted channels with a separation length of 8.20 cm, 7-9 times lower plate numbers were obtained than in a HF-etched channel with similar dimensions, successful separation of five fluorescein isothiocyanate (FITC)-labeled amino acids was obtained on a powder-blasted chip within 80 s. Efficiencies of up to 360 000 plates/m were demonstrated on this chip, when a higher buffer concentration was used at a field strength of 664 V/cm. It can be concluded that powder-blasted microchannel chips, although they have a lower separation efficiency compared to HF-etched chips, perform well enough for many applications. Powder blasting can therefore be considered a low-cost and efficient alternative to HF etching, in particular because of the possibility to fabricate access holes through the glass with the same process.  相似文献   
4.
The present paper provides a detailed analysis of the analyte-wall adsorption effects in nanochannels, including a random walk study of the analyte-wall collision frequency, and uses these insights to estimate wall desorption times from chromatographic experiments in nanochannels. Using coumarin dye analytes and using a methanol/water mixture buffered at pH 3 in 120-nm deep channels, the surface desorption times on naked fused-silica glass were found to be maximally of the order of 60 to 150 μs, while they were found to be on the order of 100 to 500 μs on a hydrophobically coated wall. These nonzero adsorption and desorption times lead to an additional band broadening when conducting chromatographic separations. Shear-driven flows, requiring a noncoated moving wall and a stationary coated wall, intrinsically turn out to be more prone to this effect than pressure-driven or electro-driven flows for example. The present study also shows that, interestingly, the number of analyte-wall collisions increases with the inverse of the channel depth and not with its second power, as would be expected from the Einstein–Smoluchowski relationship for molecular diffusion.  相似文献   
5.
6.
Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have been fabricated via hot embossing and pressure-assisted thermal bonding. Separations of a mixture of four coumarins using varying mobile phase compositions have been monitored to study the relation between the retention factor and the ratio of organic solvent in the aqueous mobile phase. Moreover, the linear relation between the retention and the surface/volume ratio predicted in theory has been observed, achieving retention factors up to k=2.5. Under the same retentive conditions, minimal reduced plate height values of h(min)=0.4 have been obtained at retention factors of k=1.2. These experimental results are compared with the case of non-porous and porous silicon pillars. Similar results for the plate heights are achieved while retention factors are higher than the non-porous silicon column and considerably smaller than the porous pillar column, given the non-porous nature of the used cyclo olefin polymer. The feasibility of using this polymer column as an alternative to the pillar array silicon columns is corroborated.  相似文献   
7.
We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 μm and an interpillar distance of 2.5 μm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm). The reduced plate height curves that were obtained for the different investigated markers all overlapped very well, and attained a minimum value of about hmin = 0.3 (reduction based on the pillar diameter), corresponding to 1.6 μm in absolute value and giving good prospects for high efficiency separations. The obtained reduced retention time values were in fair agreement with that predicted by the Di Marzio and Guttman model for a flow between flat plates, using the minimal interpillar distance as characteristic interplate distance.  相似文献   
8.
An experimental study of a micromachined non-porous pillar array column performance under non-retentive conditions is presented. The same pillar structure has been fabricated in cyclo-olefin polymer (COP) chips with three different depths via hot embossing and pressure-assisted thermal bonding. The influence of the depth on the band broadening along with the already known contribution arising from the top and bottom cover plates has been studied. The experimental results exhibit reduced plate heights as low as 0.2, which are in agreement with the previous experimental work. Moreover, the constant values of the reduced Van Deemter expression are also in accordance with the previous studies. A more exhaustive study of the C-term band broadening is also presented, showing that comparing the space between the pillars with different open tubular rectangular channels offers a good estimation of the C-term band broadening that is obtained experimentally. These experimental results, hence, confirm that micromachined pillar array columns fabricated in COP can achieve the same performance as the ones fabricated in silicon for the presently studied pillar channel design.  相似文献   
9.
Fluorescent sensor array in a microfluidic chip   总被引:1,自引:0,他引:1  
Miniaturization and automation are highly important issues for the development of high-throughput processes. The area of micro total analysis systems (muTAS) is growing rapidly and the design of new schemes which are suitable for miniaturized analytical devices is of great importance. In this paper we report the immobilization of self-assembled monolayers (SAMs) with metal ion sensing properties, on the walls of glass microchannels. The parallel combinatorial synthesis of sensing SAMs in individually addressable microchannels towards the generation of optical sensor arrays and sensing chips has been developed. [figure: see text] The advantages of microfluidic devices, surface chemistry, parallel synthesis, and combinatorial approaches have been merged to integrate a fluorescent chemical sensor array in a microfluidic chip. Specifically, five different fluorescent self-assembled monolayers have been created on the internal walls of glass microchannels confined in a microfluidic chip.  相似文献   
10.
Sacrificially etched 2-D nanofluidic channels and nanospaces with integrated floor and ceiling electrodes and arbitrary channel geometries have been demonstrated with channel heights from 20 nm to 400 nm, widths from 800 nm to 40 microm, and lengths up to 3 mm, using SU-8 as the channel structural material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号