首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   0篇
化学   90篇
力学   1篇
数学   1篇
物理学   6篇
  2013年   1篇
  2012年   2篇
  2009年   2篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1989年   2篇
  1988年   8篇
  1986年   6篇
  1985年   9篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   8篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
The solution polyesterification of dicarboxylic acids in pyridine, the activated intermediates of which were difficult to dissolve in tosyl chloride/dimethylformamide/pyridine, was investigated in the presence of lithium chloride. The solubility of the activated dicarboxylic acids was largely improved by the presence of the salt, and the polycondensation with bisphenols was greatly facilitated. The salt was more effectively added to a pyridine solution of dicarboxylic acids than to the activated dicarboxylic acids in pyridine. The favorable additive effect on the improved solubility was attributed to a lowered degree of association of the activated dicarboxylic acids, which led to distributions of the resulting oligomers from bisphenols at an earlier stage closer to the theoretical ones and yielded better polycondensation results. The reaction, which proceeded through favorable distributions of the co‐oligomers, produced copolymers of higher inherent viscosities and slightly block sequence distributions determined by NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2725–2733, 2004  相似文献   
2.
A two‐stage co‐oligomerization of the oligomers initially formed from an equimolar mixture of isophthalic acid (IPA) and terephthalic acid (TPA) and 2,2‐bis(4‐hydroxyphenyl)propane (BPA, 50 mol %) with bisphenols (BPs, 20 mol %) was carried out using a tosyl chloride/dimethylformamide/pyridine condensing agent. The distributions of the resulting oligomers (nx‐mers), which were quenched with methanol, were determined by a combination of gel permeation chromatography (GPC) and NMR. These distributions (presented by molar percentage) were conveniently calculated with the equation nx (mol %) = nx (% mol by GPC) × n0 (mol % by NMR)/n0 (% mol by GPC), where nx (% mol) = nx (wt % by GPC)/its molecular weight. The results showed the distributions of the preformed IPA/TPA‐BPA oligomers to be in fairly good accord with those obtained directly from GPC and to be supported by the NMR results. The calculation was applied to the co‐oligomers prepared up to a reaction of 0.7, at which there was an increase in the number of higher oligomers indivisible by GPC and the distributions could no longer be determined by molar percentage. The calculated distributions are discussed in relation to the results of copolycondensation. The sequence distributions in the resulting co‐oligomers, which were also examined by NMR, are compared with those in the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 44–51, 2004  相似文献   
3.
A two‐stage copolycondensation of a mixture of equal parts of isophthalic acid and terephthalic acid first with a′,b′‐dihydroxyacetophenone (a′,b′‐DHAP) and then with isomeric c′,d′‐DHAP was examined at 60 and 80 °C. A structurally selective reaction was observed. At 80 °C, the preformed oligomers from symmetrically substituted 2′,6′‐DHAP reacted better with similarly substituted 2′,6′‐ or 3′,5′‐DHAP to give the copolymers of significantly higher inherent viscosity values than from the reaction with asymmetrically substituted 2′,4′‐DHAP, whereas at 60 °C they did almost equally well with any c′,d′‐DHAP. Similarly, the reaction of oligomers from 2′,4′‐DHAP with asymmetrically substituted 2′,4′‐DHAP or 2,4‐dihydroxybenzophenone yielded better results than those from the reaction with 2′,6′‐ or 3′,5′‐DHAP at both temperatures. The copolycondensations with comonomers of the structure independent of DHAPs were not affected by the preformed oligomers from DHAPs. The results are discussed in terms of the distributions of resulting oligomers determined by gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 616–623, 2003  相似文献   
4.
5.
For bounded normal operators in Krein spaces we give a necessary and sufficient condition for strong stability. The same result for unitary operators was obtained by M.G.Krein [1] (see also [2]). For selfadjoint operators we refer to the papers of P.Jonas, H.Langer [3] and H.Langer [4].  相似文献   
6.
7.
A fast and sensitive method for the simultaneous determination of Sudan dyes (I, II, III, and IV) in food samples was developed for the first time using partial filling micellar electrokinectic chromatography-mass spectrometry (MEKC-MS). The use of MEKC was essential to achieve the separation of these neutral analytes, while the partial filling technique was necessary to avoid the contamination of the ion source with non-volatile micelles. MEKC separation and MS detection conditions were optimized in order to achieve a fast, efficient, and sensitive separation of the four dyes. Filling 25% of the capillary with an MEKC solution containing 40 mM ammonium bicarbonate, 25 mM SDS, and 32.5% (v/v) acetonitrile, a baseline separation of the four azo-dyes was obtained in 10 min. Tandem MS was investigated in order to improve the sensitivity and selectivity of the analysis. Limits of detection (LOD) values 5, 8, 15, and 29 times better were obtained for Sudan III, I, II, and IV, respectively, using partial filling MEKC-MS/MS instead of partial filling MEKC-MS. Under optimized conditions, LOD from 0.05 to 0.2 μg/mL were obtained. The suitability of the developed method was demonstrated through the fast and sensitive determination of Sudan I, II, III, and IV in spiked chilli powder samples. This determination could not be achieved by MEKC-UV due to the existence of several interfering compounds from the matrix.  相似文献   
8.
It is proposed that depression of the transition temperatures, especially the melting point (Tm), can be achieved by the introduction of a different amide bond structure into the copolyamides of dicarboxylic acids and diamines by copolymerization of aminocarboxylic acids, such as p-aminobenzoic acid. The effect was examined by the amount and distribution of the structure in the copolylamindes. Copolycondensations of PEG3, p-aminobenzoic acid, and diamines with different chain lengths showed that the structural change of the amide bond in the copolymers, especially its distribution, was more important than its total amount in them. Several types of aminocarboxylic acids were briefly examined to study the effect. © 1994 John Wiley & Sons, Inc.  相似文献   
9.
The reaction promoted by thionyl chloride and pyridine could selectively activate carboxyl groups of hydroxybenzoic acids to give polyesters of high inherent viscosities up to 3.8. Favorable conditions were studied in terms of the temperatures for the initial reaction with the acids and subsequent aging at room temperature. Copolymers of several combinations of hydroxybenzoic acids with high molecular weights were obtained in quantitative yield by carrying out the polycondensation at 80°C for 3 h. The reaction could also produce high molecular polyesters in a simpler process without the initial activation of dicarboxylic acids by adding a mixture of these monomers to the condensing agent, and a tough film- and fiberforming polymer was obtained from 4,4′-dihydroxyphenylsulfone of low nucleophilicity whose polymer of high molecular weight is difficult to obtain. The process was also successfully applied to the direct copolycondensations of hydroxybenzoic acids, aromatic dicarboxylic acids, and bisphenols to produce polyesters of ηinh up to 5.6.  相似文献   
10.
Poly-p-benzamide of high molecular weight (ηinh = ~ in H2SO4) was obtained by the direct polycondensation reaction of p-aminobenzoic acid (p-ABA) by means of diphenyl and triaryl phosphites in N-methylpyrrolidone (NMP)-pyridine solution containing lithium and calcium chlorides. Molecular weight of polymer varied with the amount of these salts, showing maximum values at the concentration of about 4 wt-% of LiCl or about 8 wt-% of CaCl2 in the reaction mixture. The reaction temperature at around 80°C gave a polymer of the highest viscosity. The polycondensation reaction was also affected by monomer concentration, solvents, and tertiary amines like pyridine. Similarly, aromatic polyamides with high molecular weight (ηinh values up to 1.34 in H2SO4) were prepared from isophthalic acid and aromatic diamines, whereas terephthalic acid gave only low-viscosity polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号