首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Molecular dynamics (MD) simulations are performed to study the stability of structure H clathrate-hydrates of methane+large-molecule guest substance (LMGS) at temperatures of 270, 273, 278 and 280 K under canonical (NVT-) ensemble condition in a 3×3×3 structure H unit cell replica with 918 TIP4P water molecules. The studied LMGS are 2-methylbutane (2-MB), 2,3-dimethylbutane (2,3-DMB), neohexane (NH), methylcyclohexane (MCH), adamantane and tert-butyl methyl ether (TBME). In the process of MD simulation, achieving equilibrium of the studied system is recognized by stability in calculated pressure for NVT-ensemble. So, for the accuracy of MD simulations, the obtained pressures are compared with the experimental phase diagrams. Therefore, the obtained equilibrium pressures by MD simulations are presented for studying the structure H clathrate-hydrates. The results show that the calculated temperature and pressure conditions by MD simulations are consistent with the experimental phase diagrams. Also, the radial distribution functions (RDFs) of host-host, host-guest and guest-guest molecules are used to analysis the characteristic configurations of the structure H clathrate-hydrate.  相似文献   
2.

Most water in the world is as saline water in seas and oceans. Desalination technology is a promising method to solve the global water crisis. Recently, many attentions have been paid to the graphene-based membranes in water desalination due to their low production cost and high efficiency. In this paper, molecular dynamics simulations are employed to investigate the effect of functionalized graphene nanosheet (GNS) membranes on the performance of salt separation from seawater in terms of water permeability and salt rejection. For this purpose, the hydrogenated (–H) and fluorinated (–F) pores were created on the GNS membrane. Then, the functionalized graphene membrane was placed in the middle of the simulation box in an aqueous ionic solution containing Na+ and Cl? ions. The applied pressure (in the range of 10–100 MPa) was used as the driving force for transport of water molecules across the reverse osmosis (RO) graphene-based membrane in order to obtain the water permeability and salt rejection. Also, radial distribution functions (RDFs) of ion–water and water–water as well as the water density map around the membrane were obtained. The results indicated that the hydrophilic chemical functions such as fluorine (–F) can improve the water permeability at low pressures.

  相似文献   
3.

Desalination of seawater can be an effective way to access drinking water. In this study, the performance of functionalized silicon carbide nanosheet (SiCNS) membranes for water desalination was investigated using molecular dynamics (MD) simulations. For this purpose, four types of membranes with various functionalized pores were considered to investigate their capabilities in water desalination. The chemical functions of fluorine (–F) (system S1), hydrogen (–H) (systems S2 and S3), and hydrogen (–H) and hydroxyl (–OH) (system S4) were bonded to the pore edge of the SiCNS membranes. Also, the effect of the number of pores in the membrane on the water permeability was studied between systems S2 and S3. The SiCNS membrane was placed at the center of the simulation box and the external pressure was applied to the system in the range of 10–100 MPa. The water permeability, salt rejection, potential of mean force of ions, water density, water density map, and radial distribution function (RDF) of water molecules were calculated in this work. The results demonstrated that the water permeability increases by adding hydrophilic chemical functions such as –F and –OH on the pore edge.

  相似文献   
4.
Journal of Thermal Analysis and Calorimetry - Many theoretical and experimental studies on heat transfer and flow behavior of nanofluids have been conducted, and the results show that nanofluids...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号