首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   5篇
化学   52篇
力学   2篇
数学   1篇
物理学   4篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   6篇
  2014年   8篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2000年   1篇
  1996年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
1.
The field of medicinal chemistry is currently witnessing a deuterium rush owing to the remarkable properties of this element as bioisoster of hydrogen atom. Aromatic hydrogen isotope exchange (HIE) is one of the most studied strategies nowadays as it promises to access deuterium-modified drugs directly from their non-labeled parents. While most of the recent studies focus on metal-catalyzed C−H activation strategy, the use of superacidic conditions has been largely overlooked. This study shows that the use of TfOD as reaction medium allows the late-stage polydeuteration of a broad library of pharmaceuticals bearing a wide array of functional groups, complementing existing procedures.  相似文献   
2.
Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/– and As m +/– ) and 34 binary (As m S p +/– ) species for As2S3 glass, 2 unary (Se q +/– ) and 26 binary (As m Se q +/– ) species for As2Se3 glass, 7 unary (Te r +/– ) and 23 binary (As m Te r +/– ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials.
Graphical abstract ?
  相似文献   
3.
The use of UV light to initiate emulsion polymerization processes is generally overlooked, whilst extensive literature exists on photocuring of monomer films. In this study, the unique potential of UV light to produce at ambient temperature polyacrylate latexes without initiator was exploited. Although radical initiators are utilized at low concentration, their cost, toxicity, and odor provide incentives for finding alternatives. Starting with concentrated (30 wt %) and low scattering acrylate miniemulsions (droplet diameter <100 nm), it was demonstrated that acrylate self‐initiation can promote an efficient and fast photopolymerization in micrometer‐scale reactor (spectrophotometric cell) and lab‐scale photoreactor. Herein, all kinetic, colloidal, and mechanistic aspects involved in the self‐initiation of acrylate miniemulsion were extensively examined to provide a complete picture. In particular, the effects of droplet size, initiating wavelength, optical path, and irradiance on the course of the polymerization were thoroughly discussed. A diradical self‐initiation pathway is the most likely mechanism. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1843–1853  相似文献   
4.
5.
In this work, we reported the preparation of a novel biomaterial, by graft-polymerization of 2-2-dimethyl-1-3-dioxolan-4-yl methyl acrylate (solketalacrylate, DMDMA) on hydroxyethyl cellulose (HEC) using KPS as initiator. Several experiments were performed to found the optimum conditions for the preparation of this biopolymer, by varying the time of the reaction as well as the initiator and the monomer ratio. Results showed that the highest grafting yield was 25%, obtained after 72?minutes at 65?°C, using THF as solvent. The structure of the grafted copolymer was confirmed by X-ray diffraction patterns which showed, besides the characteristic peaks of HEC at 2θ?=?31.74° and 44.63° a new peak at 2θ?=?30.72° related to an organized structure of the grafted polymer on the HEC backbone. The DSC analysis showed a single glass transition temperature Tg, intermediate between the corresponding values for HEC and neat poly(solketal acrylate). Moreover, the grafted biomaterial presented two-fold more moisture absorption ability by comparison with HEC, making this new synthetic biomaterial highly promising for dryness applications. In our knowledge, the synthesized monomer: 2-2-dimethyl-1-3-dioxolan-4-yl methyl acrylate, (solketal acrylate, DMDMA), has never been grafted on the HEC backbones before that is what makes the novelty of the present work.  相似文献   
6.
When finally processed to provide the function for which the latex was selected―binding, protecting, finishing―components such as surfactant, costabilizer or initiator become generally useless, not to say detrimental. In this study, we show that miniemulsion photopolymerization provides a suitable method to create latex without the apparent addition of these three compounds. Indeed, UV-driven monomer self-initiation can create initiating radicals without the aid of initiator, the fast in situ photogenerated polymer can hinder Ostwald ripening with the assistance of external costabilizer, and finally, UV-transparent clay can replace conventional surfactant to ensure colloidal stabilization. Each strategy has been developed individually before being combined together to end up with a unique miniemulsion procedure free of initiator, costabilizer and surfactant. Such approach paves the way to a simplified and environmentally improved pathway towards aqueous polymer dispersions.  相似文献   
7.
8.
The present study explored photoinduced radical processes caused by interaction of CH(4) and NH(3) with a photoexcited surface of a complex metal oxide: magnesium-aluminum spinel (MgAl(2)O(4); MAS). UV irradiation of MAS in vacuo yielded V-type color centers as evidenced by the 360 nm band in difference diffuse reflectance spectra. Interaction of these H-bearing molecules with photogenerated surface-active hole states (O(S)(-)?) yielded radical species which on recombination produced more complex molecules (including heteroatomic species) relative to the initial molecules. For the MAS/CH(4) system, photoinduced dissociative adsorption of CH(4) on surface-active hole centers produced ?CH(3) radicals that recombined to yield CH(3)CH(3). For MAS/NH(3), a similar dissociative adsorption process led to formation of ?NH(2) radicals with formation of NH(2)NH(2) as an intermediate product; continued UV irradiation ultimately yielded N(2). For the mixed MAS/CH(4)/NH(3) system, however, interaction of adsorbed NH(3) and CH(4) on the UV-activated surface of MAS yielded ?NH(2) and ?CH(3) radicals, respectively, which produced CH(3)-NH(2) followed by loss of the remaining hydrogens to form a surface-adsorbed cyanide, CN(S), species. Recombination of photochemically produced radicals released sufficient energy to re-excite the solid spinel, generating new surface-active sites and a flash luminescence (emission decay time at 520 nm, τ ~ 6 s for the MAS/NH(3) case) referred to as the PhICL effect.  相似文献   
9.
A high-density array of opto-electrochemical nanosensors is presented for remote DNA detection. It was fabricated by chemical etching of a coherent optical fibre bundle to produce a nanotip array. The surface of the etched bundle was sputter-coated with a thin ITO layer which was eventually insulated by an electrophoretic paint. The fabrication steps produced a high-density array of electrochemical nanosensors which retains the optical fibre bundle architecture and its imaging properties. A DNA probe was then immobilized on the nanosensor array surface in a polypyrrole film by electropolymerisation. After hybridisation with the complementary sequence, detection of the strepavidin-R-phycoerythrin label is performed by fluorescence imaging through the optical fibre bundle itself. Control experiments and regeneration steps have also been successfully demonstrated on this nanostructured opto-electrochemical platform.  相似文献   
10.
In a recent article, Ollis analyzed heretofore reported photocatalyst kinetics of surface photochemical reactions that take place in heterogeneous systems and that rely heavily on the Langmuir-Hinshelwood (LH) kinetic model to interpret the experimental observations. This model assumes a fast adsorption/desorption equilibrium step and a subsequent slow surface step. His interesting analysis of the experimental results reported in 2000 by Emeline and co-workers, Xu and Langford, and Martyanov and Savinov prompted our reexamination of the LH kinetic model along with several other dogmas that continue to propagate in the heterogeneous photocatalytic landscape. This short article discusses some of these issues and reexamines certain misinterpretations. Specifically, we reexamine (1) the a priori assumed validity of the LH kinetic model in heterogeneous photocatalysis, (2) the recombination of photogenerated free charge carriers on the solid (metal oxide) photocatalyst by the band-to-band recombination pathway, and (3) the mistaken assertion that the kinetics of a heterogeneous photoreaction are either only first-order dependent or half-order dependent on photon flow (i.e., light irradiance).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号