首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2022年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Chemistry of Natural Compounds - A new seco-abietanoid, 12-methoxy-7-oxo-6,7-secoabieta-8,11,13-trien-6-oic acid (1), and a known seco-abietanoid,12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial...  相似文献   
2.
A method termed as liquid-liquid-liquid microextraction was utilized to extract chlorophenols from water. The extracted chlorophenols, present in anionic form, were then separated, identified, and quantitated by ion-pair high-performance liquid chromatography with photodiode array detection (HPLC/DAD). For trace chlorophenol determination using HPLC/DAD, the chlorophenolate anion provides a better ultraviolet spectrum for quantitative and qualitative analyses than does uncharged chlorophenol. This is due to the auxochromic effect of the phenolate anion. In the study, experimental conditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. Relative standard deviations (RSD, 2.3-5.4%), coefficients of determination (r2 0.9994-0.9999), and detection limits (0.049-0.081 ng mL(-1)) of the proposed method were investigated under the selected conditions. The method was successfully applied to analyses of reservoir and tap water samples, and the relative recoveries of chlorophenols from the spiked reservoir and tap water samples were 94.1-100.4% and 87.8-101.2%, respectively. The proposed method is capable of identifying and quantitating each analyte to 0.5 ng mL(-1), confirming the HPLC/DAD technique to be quite robust for monitoring trace levels of chlorophenols in water samples.  相似文献   
3.
A method termed liquid-liquid-liquid microextraction (LLLME) was utilized to extract 4-t-butylphenol, 4-t-octylphenol, 4-n-nonylphenol, and bisphenol-A from water. The extracted target analytes were separated and quantified by high-performance liquid chromatography using a fluorescence detector. In LLLME, the donor phase (i.e. water sample) was made weakly acidic by adding monobasic potassium phosphate (KH(2) PO(4)); the organic phase adopted was 4-chlorotoluene; the acceptor phase (i.e. enriched extract) was 0.2 M tetraethylammonium hydroxide dissolved in ethylene glycol. This study solves a problem associated with the surface activity of long-chain alkylphenolate ions, permitting LLLME to extract long-chain alkylphenols. Experimental conditions such as acceptor phase composition, organic phase identity, acceptor phase volume, sample agitation, extraction time, and salt addition were optimized. The relative standard deviation (RSD, 2.0-5.8%), coefficient of determination (r(2) 0.9977-0.9999), and detection limit (0.017-0.0048 ng/mL) of the proposed method were achieved under the selected optimized conditions. The method was successfully applied to analyses of lake and tap water samples, and the relative recoveries of target analytes from the spiked lake and tap water samples were 92.8-106.3 and 93.6-105.6%, respectively. The results obtained with the proposed method confirm this microextraction technique to be reliable for the monitoring of alkylphenols and bisphenol-A in water samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号