首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   5篇
物理学   5篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 453 毫秒
1
1.
Journal of Sol-Gel Science and Technology - Although sol–gel silica nanoparticles are widely used in academic and industrial applications, only a few studies have focused on amine catalysts...  相似文献   
2.
A novel nano-rod mercury(II) coordination compound [Hg (BINH)I2] (1), (BINH is the abbreviation of benzylideneisonicotinohydrazide) is synthesized by a hydrothermal method that produces the coordination compound at a nanosize level. The new nanostructure is characterized by scanning electron microscopy, powder X-ray diffraction, elemental analysis, and IR spectroscopy. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal structure of this complex shows that each mercury(II) center is four-coordinated with two N-donor atoms from tow BINH ligands and tow iodo anions. Self-assembly of this complexes is pereformed by CH?I and π-π stacking interactions. The supramolecular features in these complexes are controlled by weak directional intermolecular interactions.  相似文献   
3.
A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles.  相似文献   
4.
New LnxSb2−xSe3 (Ln: Yb3+, Er3) based nanomaterials were synthesized by a co-reduction method. Powder XRD patterns indicate that the LnxSb2−xSe3crystals (Ln=Yb3+, Er3+, x=0.00-0.12) are isostructural with Sb2Se3. The cell parameters b and c decrease for Ln=Er3+ and Yb3+ upon increasing the dopant content (x), while a increases. SEM images show that doping of the lanthanide ions in the lattice of Sb2Se3 generally results in nanoflowers. UV-vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions in case of Yb3+ doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show additional emission bands centered at 955 nm, originating from the 2F7/22F5/2 transition (f-f transitions) of the Yb3+ ions. DSC curves indicate that Sb2Se3 has the highest thermal stability. The temperature dependence of the electrical resistivity of doped-Sb2Se3 with Yb3+ and Er3+ was studied.  相似文献   
5.
New LnxSb2−xS3 (Ln: Lu3+, Ho3+, Nd3+)-based nanomaterials were synthesized by a co-reduction method. Powder XRD patterns indicate that the LnxSb2−xS3 crystals (Ln=Lu3+, Ho3+, x=0.00−0.1 and Ln=Nd3+, x=0.00−0.08) are isostructural with Sb2S3. SEM images show that doping of Lu3+ and Ho3+ ions in the lattice of Sb2S3 results in nanorods while that in Nd3+ leads to nanoflowers. UV-vis absorption and emission spectroscopy reveal mainly electronic transitions of the Ln3+ ions in case of Ho3+ and Nd3+ doped nanomaterials. Emission spectra show intense transitions from excited to ground state of Ln3+. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2S3, show other emission bands originating from f-f transitions of the Ho3+ ions. TGA curves indicated that Sb2S3 has the highest thermal stability. The electrical conductance of Ln-doped Sb2S3 is higher than undoped Sb2S3, and increase with temperature.  相似文献   
6.
Various β-gallium oxide (β-Ga2O3) nanostructures such as nanowire, nanobelt, nanosheet, and nanocolumn were synthesized by the thermal annealing of compacted gallium nitride (GaN) powder in flowing nitrogen. We suggest that Ga2O3 vapor might be formed by the reaction of oxygen with the gaseous Ga formed by GaN decomposition. The Ga2O3 vapor diffuses into voids derived by compacting GaN powder and is supersaturated there, resulting in the growth of Ga2O3 nanostructures via the vapor–solid (VS) mechanism. Ga2O3 plate-like hillocks and nanostructures were also grown on the surface of a c-plane sapphire placed on the GaN pellet.  相似文献   
7.
8.
A theoretical formula that is based on the geometrical theory of diffraction (GTD) is proposed for computing sound diffraction by multiple wedges, barriers, and polygonal-like shapes. The formula can treat both convex and concave edges, where edges may or may not be inter-connected. Comparisons of theoretical predictions with other results done by the BEM or experiments for scaled model confirm the accuracy of the present formula. Numerical examples such as double wedges and doubly inclined barrier show that when there exist several diffraction paths for given source and receiver positions, the insertion loss is dominated by the diffraction associated with the shortest propagation path. It is also found that although the partially inclined barrier increases the shadow zone as compared to the simple screen type of the same total height, it does not necessarily increase the insertion loss at all heights.  相似文献   
9.
10.
Sm3+ doped Sb2Se3 nanorods were synthesized by the co-reduction method at 180 °C and pH=12 for 48 h. Powder XRD patterns indicate that the SmxSb2−xSe3 crystals (x=0.00-0.05) are isostructural with Sb2Se3. The cell parameters increase for Sm3+ upon increasing the dopant content (x). SEM images show that doping of Sm3+ ions in the lattice of Sb2Se3 results in nanorods. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sm0.05Sb1.95Se3 is oriented in the [1 0 −1] growth direction. UV-vis absorption reveals mainly electronic transitions of the Sm3+ ions in doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show other emission bands originating from f-f transitions of the Sm3+ ions. The electrical conductance of Sm-doped Sb2Se3 is higher than undoped Sb2Se3 and increase with temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号