首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2016年   1篇
  2014年   1篇
  2012年   4篇
排序方式: 共有6条查询结果,搜索用时 234 毫秒
1
1.
Antimicrobial packaging protects the product from the external environment and microbial contamination, conferring numerous advantages on human health. Interest in biopolymers as packaging materials has considerably increased recently. Bacterial cellulose is an interesting biomaterial produced as nanofibrils by Acetobacter xylinium and is a promising candidate due to its remarkable properties. New composite materials with antimicrobial properties were developed in this work, containing poly(vinyl alcohol) (PVA) as polymer matrix and ground bacterial cellulose (BC) as reinforcing fibres. Sorbic acid was used as an antimicrobial agent because it is a preservative recognised in the food industry. The materials obtained were studied using Fourier-transformed infrared spectroscopy (FTIR). The swelling rate of the composites was also measured. Release experiments of sorbic acid from the composite films into water were performed and the mass transfer phenomena were investigated using Fick’s law of diffusion. The antimicrobial effect was tested against Escherichia coli K12-MG1655. The results obtained indicated that the new biocomposite films could be promising antimicrobial food packaging materials.  相似文献   
2.
The development of biodegradable packaging materials, especially from renewable resources is a constant preoccupation of nowadays, because of the environmental problems caused by synthetic polymers. The combination of cellulose with other polymeric materials could be an ecologic alternative and a way to use renewable resources for food packaging. Bacterial cellulose which is produced by microbial fermentation is also a promising material which can be used not only in biomedical application, but also as food packaging material. In this research different composite films between poly(vinyl alcohol)-bacterial cellulose (PVA-BC) were obtained by casting method. The obtained films were UV irradiated for different periods of times from 1 to 10 hours, using a mercury lamp, Philips TUV-30, emitting light mainly at 254 nm. Changes in FT-IR spectra before and after UV irradiation and the modification of transparency and of the swelling characteristics of the films were observed. As it was expected the composites materials are sensitive at UV exposure.  相似文献   
3.
4.
Active packaging materials are the subject of research because their performance exceeds that of traditional packaging. From this class, antimicrobial materials extend the shelf-life of products and reduce the risk of contamination by pathogens. In this paper, new composite materials with antimicrobial properties are obtained by using polyvinyl alcohol and bacterial cellulose powder. Potassium (2E,4E)-hexa-2,4-dienoate was used as the antimicrobial agent. The films thus obtained were characterised using Fourier-transform infrared spectroscopy and scanning electron microscopy. Mass transfer phenomena concerning the release of potassium (2E,4E)-hexa-2,4-dienoate were investigated. The results indicated that the new biocomposite films could be used as antimicrobial packaging materials.  相似文献   
5.
Bacterial cellulose (BC), a natural polymer with unique physical and mechanical properties, has several applications in the biomedical field, including drug loading and controlled drug delivery. For this study, a Box-Behnken experimental design was employed as a statistical tool to optimize the release of a model drug, amoxicillin, from BC membranes. Independent variables studied were the concentration of the drug (X1), the concentration of glycerol (X2) and the concentration of a permeation enhancer (X3). From the variables studied, drug concentration had the highest effect on drug release. Among the other independent variables, th linear and quadratic X2 terms, the linear X3 term and the interaction term X2X3 were found to affect the release of amoxicillin from bacterial cellulose membranes.
  相似文献   
6.
The effect of ultrasonic irradiation (40 kHz) on the calcium carbonate deposition on bacterial cellulose membranes was investigated using calcium chloride (CaCl2) and sodium carbonate (Na2CO3) as starting reactants. The composite materials containing bacterial cellulose-calcium carbonate were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and color measurements. The polymorphs of calcium carbonate that were deposited on bacterial cellulose membranes in the presence or in the absence of ultrasonic irradiation were calcite and vaterite. The morphology of the obtained crystals was influenced by the concentration of starting solutions and by the presence of ultrasonic irradiation. In the presence of ultrasonic irradiation the obtained crystals were bigger and in a larger variety of shapes than in the absence of ultrasounds: from cubes of calcite to spherical and flower-like vaterite particles. Bacterial cellulose could be a good matrix for obtaining different types of calcium carbonate crystals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号