首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   2篇
  国内免费   4篇
化学   54篇
晶体学   2篇
力学   1篇
数学   2篇
物理学   5篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   2篇
  2013年   15篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2000年   1篇
  1983年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
A rapid, efficient, convenient and cost-effective procedure has been developed for the synthesis of 3,5-bis-(arylmethylidene)-tetrahydropyran-4-ones by the condensation of tetrahydropyran-4-one with araldehydes in the presence of catalytic amount of iodine to obtain the products in good to excellent yield. The reactions work at 25 °C and go to completion within 30–60 min.  相似文献   
2.
3.
An expeditious synthesis of 2-aryl-benzimidazoles by the condensation of o-phenylenediamine with various araldehydes is described. This greener protocol is catalyzed by Amberlite IR-120, and proceeds efficiently in the absence of any organic solvent under microwave irradiation within 3–5 min.  相似文献   
4.
[n.3.0]Bicycles (n = 3–6) can be synthesized using palladium-catalyzed asymmetric allylic alkylation followed by ruthenium-catalyzed cycloisomerization. New types of triarylphosphino-1,2-diaminooxazoline ligands show the same high levels of enantioselectivity observed with Trost ligand when employed in Pd-catalyzed allylic alkylation reactions. The enyne products of these allylic alkylation reactions were further elaborated using a Ru-catalyzed redox isomerization process, for which a mechanism is proposed.  相似文献   
5.
A multiwavelength Brillouin/erbium fibre laser (BEFL) which operates in the long wavelength (L-band) region is demonstrated for potential applications in an L-band wavelength division multiplexing (WDM) communication system. The laser configuration consists of a long erbium-doped fibre to enable L-band amplification where two 3-dB couplers take a portion of the generated BEFL signal and re-inject it into the single mode fibre to seed a cascaded BEFL line in the same direction as the first BEFL line. A stable and strong laser comb of up to five lines with 10-GHz spacing has been obtained with a Brillouin pump (BP) of 9.2 mW and a 980 nm pump of 92 mW. The BEFL has shown a broad tuning range with a tuning characteristic for line #1 which is flat over a range greater than 9.9 nm.  相似文献   
6.
A porous, solid insoluble polysiloxane‐immobilized ligand system bearing pyrogallol active sites of the general formula P? (CH2)3? NH(CH2)3OC6H3(OH)2 (where P represents [Si? O]n siloxane network) has been prepared by the reaction of 3‐aminopropylpolysiloxane with 1,3‐dibromopropane followed by the reaction with pyrogallol. 13C CP‐MAS NMR and X‐ray photoelectron spectroscopy confirmed that the pyrogallol is chemically bonded to the siloxane backbone. Thermal analysis showed that the ligand system is stable under nitrogen at relatively high temperature. The polysiloxane–pyrogallol ligand system exhibits high potential for the uptake of the metal ions (Fe3+, Co2+, Ni2+ and Cu2+). Complexation of the pyrogallol ligand system for the metal ions at the optimum conditions was found to be in the order Fe3+ > Cu2+ > Ni2+ > Co2+. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
Well-crystallized hydrogenated carbon nitride thin films have been prepared by microwave plasma enhanced chemical vapor deposition (MWPECVD). 1H-1,2,3-triazole+N2 and Si (1 0 0) were used as precursor and substrate, respectively. Substrate temperature during the deposition was recorded to be 850 °C. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photo-electron spectroscopy (XPS) analyses. The plasma compositions were checked by optical emission spectroscopy (OES). XRD observation strongly suggests that the films contain polycrystalline carbon nitride with graphitic structure of (1 0 0), (0 0 2), (2 0 0) and (0 0 4). XPS peak quantification reveals that the atomic ratio of the materials C:N:O:Si is 32:41:18:9. X-ray photo-electron peak deconvolution shows that the most dominant peak of C (1s) and N (1s) narrow scans correspond to sp2 hybrid structure of C3N4. These observations indicate that 1H-1,2,3-triazole favors the formation of hydrogenated carbon nitride with graphitic phase by CVD method and thus is in good agreement with XRD results. SEM of surface and OES of plasma also support the formation of polycrystalline carbon nitride films from 1H-1,2,3-triazole+N2 by CVD.  相似文献   
8.
We describe a one-pot four component synthesis of pyranopyroles from aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of catalytic amounts of an organocatalyst imidazole in water as medium. A plausible mechanism for the formation of imidazole catalyzed pyranopyrazoles has been envisaged. This method is rapid, simple, provides products in good yield, and is eco-friendly. In addition, based on the optimized geometry, the frequency and intensity of the vibrational bands of 6-amino-4-(4'-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole were obtained by the density functional theory (DFT) calculations using 6-31G(d,p) basis set. The vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement.  相似文献   
9.
10.
Platinum electrodes modified with Mn(II) 5-(N-(8-pyrrole-yl-3,6-dioxa-1-aminooctane)phenylamide-10,15,20-trimethoxyphenylporphyrin (Mn(II)triOMeTCPPyP) using multi-sweep cyclic voltammetry and differential pulse amperometry were evaluated as electrocatalytic surfaces for the oxidation of nitric oxide. The electrodes modified using the pulse amperometric approach were more sensitive towards the detection of nitric oxide. The increased sensitivity led to the attainment of a wider linear dynamic range for the quantification of nitric oxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号