首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2019年   1篇
  2018年   2篇
  2009年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
采用乙腈提取、固相萃取(SPE)富集浓缩技术结合自行研制开发的毛细管液相色谱(CLC)仪,同时分离测定了食品和水样中1种有机磷和3种氨基甲酸酯类杀虫剂残留。对影响SPE效率和CLC分离检测的各类因素进行了优化,包括固相萃取柱种类、样品pH、洗脱剂种类和体积、上样速率、盐效应、上样体积、检测波长、流动相种类和比例等。结果表明,4种杀虫剂在6 min内达到完全分离,检出限为0.35~1.20 μg/kg,定量限为1.17~4.00 μg/kg。使用该SPE-CLC法对西红柿、黄瓜、苹果样品和自来水、湖水水样进行加标回收测定,得到食品中加标回收率为72.41%~107.15%,相对标准偏差≤8.12%;水样中加标回收率为71.45%~109.25%,相对标准偏差≤9.28%。该法能够满足农药多残留分析要求。  相似文献   
2.
在毛细管电泳的胶束电动色谱(MEKC)模式下,采用压力辅助电动进样(PAEKI)的进样方式在线富集4种酚类雌激素(PEs)。对影响PAEKI的进样电压、进样时间等进行考察,并与传统的压力进样比较。结果表明,在最优的PAEKI条件下(-9 kV,0.3 psi(约2.1 kPa),0.4 min),4种PEs在7 min内基线分离,线性关系良好,相关系数(r)大于0.9936,己烷雌酚和双烯雌酚的线性范围为0.05~5 mg/L、双酚A和己烯雌酚的线性范围为0.1~10 mg/L;检出限(S/N=3)为0.0071~0.017 mg/L,富集倍数为11~15。使用该MEKC-PAEKI法对自来水和湖水水样进行测定,得到定量限(S/N=10)分别为0.029~0.064 mg/L和0.033~0.079 mg/L;加标回收率为75.6%~110.1%,相对标准偏差(n=5)为4.6%~11.8%。PAEKI不需要使用其他试剂,只需对电泳仪的参数进行适当调整即可实现对分析物的在线富集,简单、快速、自动化程度高。  相似文献   
3.
以竹炭为固相萃取吸附材料,考察了其对环境水样中16种多环芳烃的吸附富集能力,采用DB-35MS弹性石英毛细管色谱柱对16种多环芳烃进行分离,气相色谱-质谱联用法对多环芳烃进行定性及定量分析.结果表明,1 000 mg竹炭作为固相萃取吸附剂,10 mL二氯甲烷作为洗脱剂,上样速率5 mL/min,水样中甲醇体积分数为15%的条件下,16种多环芳烃有较好的回收率,竹炭固相萃取柱的穿透体积大于500 mL,通过实验比较竹炭的萃取回收率优于商品化的C18固相萃取柱.16种多环芳烃的质量浓度在10 ~500 ng/L范围内与峰面积的线性关系良好(苯并(k)荧蒽,苯并(a)芘,二苯并(a,h)蒽,苯并(g,h,i)苝为25 ~500 ng/L),相关系数为0.983 6 ~0.998 4.方法的检出限为0.6 ~8.0 ng/L,实际水样的加标回收率为67% ~113%,相对标准偏差为2.1% ~11.3%.通过对白沙河河水的分析表明,该方法能够满足实际水样的测定,竹炭可以作为固相萃取材料应用于水中16种多环芳烃的分析测定.  相似文献   
4.
雌二醇环境内分泌干扰物的滥用及残留对生物体和环境危害较大,其含量低且易受复杂基质干扰而难以检测。通过分子印迹技术(MIT)制备的分子印迹聚合物(MIPs)以其高选择性、高稳定性、容易制备等优势,在基质复杂、含量低、危害大的目标物分析检测中备受青睐,雌二醇分子印迹聚合物(E2-M IPs)已有较多报道。综述了2014~2018年以来,E2-M IPs的自由基聚合、溶胶-凝胶聚合和表面印迹聚合方法制备及E2-M IPs在样品前处理、传感器、膜分离等方面的应用,并对E2-M IPs的制备和应用前景进行了展望。  相似文献   
5.
环境水体中致嗅有机物分析的样品前处理技术研究进展   总被引:3,自引:1,他引:2  
环境水体中致嗅有机物种类繁多,常见的土霉味物质包括土臭素(GSM)、2-二甲基异茨醇(MIB)、2-甲氧基-3-异丙基吡嗪(IPMP)、2-甲氧基-3-异丁基吡嗪(IBMP)和2,4,6-三氯代苯甲醚(TCA)等,其在水中的质量浓度一般在ng/L ~μg/L水平且嗅阈值较低.该文总结了测定环境水体中痕量土霉味物质的气相色谱-质谱法,并对闭环捕集、吹扫捕集、液液萃取、固相萃取、固相微萃取、液相微萃取和搅拌棒吸附萃取7种样品前处理技术进行了介绍和对比.重点介绍了目前应用最广泛的顶空固相微萃取技术和新发展的液相微萃取、搅拌棒吸附萃取技术在环境水体中致嗅有机物分析中的应用,并展望了致嗅有机物的分析方法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号