首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   17篇
  国内免费   56篇
化学   578篇
力学   5篇
综合类   7篇
数学   50篇
物理学   41篇
  2022年   2篇
  2020年   2篇
  2019年   30篇
  2018年   45篇
  2017年   137篇
  2016年   132篇
  2015年   83篇
  2014年   8篇
  2013年   26篇
  2012年   39篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   36篇
  2002年   1篇
  2001年   22篇
  2000年   13篇
  1999年   28篇
  1997年   3篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1976年   10篇
  1975年   5篇
  1974年   5篇
  1973年   1篇
  1972年   3篇
  1964年   1篇
  1960年   1篇
  1958年   3篇
  1957年   4篇
  1955年   1篇
排序方式: 共有681条查询结果,搜索用时 31 毫秒
1.
对前人建立的标准曲线法测煤中自由基浓度进行优化,以DPPH标准样品和基准样品的二次积分面积比值为新参数,结果显示新参数标准曲线法的实测值与理论值相对误差都在5%以内;重复性、复现性实验的相对标准偏差都小于3%。将新参数标准曲线法用于分析不同煤化程度煤和新疆黑山煤(HS)沥青质的自由基浓度,发现随着煤化程度增加,其煤中自由基浓度逐渐增大,从低阶褐煤的8.531×10~(17)/g上升到高阶无烟煤3.37899×10~(19)/g;而在HS煤液化过程中,随着加氢液化温度的升高,其沥青质自由基浓度逐渐下降,从290℃的1.5793×10~(18)/g降到450℃的7.410×10~(17)/g,沥青质自由基浓度变化趋势与其产率变化趋势相一致。  相似文献   
2.
煤与生物质混烧灰荷电特性研究   总被引:1,自引:0,他引:1  
对玉米秸分别与两种煤以不同比例混烧生成的混烧灰进行了荷电特性研究。利用法拉第杯荷电量检测系统和静电低压撞击器(ELPI)测量了混烧灰的总体荷质比及分级荷质比,并借助于成分分析及形貌分析结果讨论了其影响机理。结果表明,随着生物质掺入量在混烧燃料中的增加,混烧灰的成分组成发生变化,使得其介电常数变大,比电阻增大,表面吸附能力增强,从而使混烧灰的总体荷质比有一定的上升趋势。对混烧灰的分级荷质比测量结果表明,排除灰样粒径的影响,生物质的掺入使得混烧灰的荷电能力得以增强,但影响相对较小,颗粒粒径是影响混烧灰荷电能力的主要因素。  相似文献   
3.
研究了21%O2/79%CO2气氛下,磷酸二氢铵对稻秆不同温度下的固钾能力及对灰熔融性的影响。利用电感耦合等离子体发射光谱(ICP-AES)、X射线衍射(XRD)以及扫描电子显微镜(SEM)等检测手段,对稻秆燃烧灰中K元素含量、产物物相以及微观形貌进行分析。固定床燃烧固钾实验表明,添加NH4H2PO4能够有效提高稻秆固钾率,900℃下稻秆自身固钾率为14.65%,添加NH4H2PO4后固钾率为68.79%,可以有效抑制生物质燃烧过程中碱金属以气态形式析出,并缓解了灰结渣现象。700℃燃烧条件下NH4H2PO4和钾反应的主要产物为KPO3;900℃下反应的主要产物为高熔点物质K2CaP2O7,从微观形貌可以看出NH4H2PO4能够抑制灰颗粒的烧结,添加NH4H2PO4能有效提升稻秆灰熔点。  相似文献   
4.
采用工业用V2O5-WO3/TiO2催化剂,基于傅里叶原位红外光谱(FT-IR)技术考察SO2的氧化过程及烟气组分对SO2氧化行为的影响;结果表明,SO2在催化剂表面氧化主要是首先吸附在催化剂表面V2O5活性位上,占据其O原子,以SO2-3形式存在,后与催化剂表面V5+-OH发生反应,生成金属硫酸盐(VOSO4)中间产物,O2重新氧化催化氧化过程中由于被SO2夺取O原子而被还原的V2O5物种,使V4+转化为V5+,促进金属硫酸盐(VOSO4)向SO3转化;SO2与NO、NH3的竞争吸附阻碍SO2在V2O5活性点位上的氧化;在SCR中,NO的脱除与SO2的氧化是相互抑制的关系。  相似文献   
5.
研究了CaO对胜利褐煤焦水蒸气气化反应性能及微结构的影响。脱除矿物质的胜利褐煤混合不同含量的CaO后在1 100 ℃下进行热解得到相应的煤焦,采用BET、XRD和Raman技术对其进行表征,同时在微型固定床反应器上对所制得煤焦进行水蒸气气化实验。比较添加CaO不同含量煤焦的反应性表明,添加2%(质量分数)的CaO对煤焦水蒸气气化的催化作用很小,而CaO添加量增大到5%时,煤焦的气化反应性能明显提高。煤焦比表面积随CaO添加量的提高而增大。XRD结果表明,在热解过程中,CaO能有效地抑制煤焦向石墨化方向发展趋势。煤焦002和100峰的峰强度随CaO添加量的增加而降低,且煤焦芳香度从66.8%降至39.9%。Raman光谱结果表明,随着CaO添加量的增加,ID/IG由1.363增加至1.541,IG/Iall由0.423减少到0.394。意味着由于Ca的催化作用,煤中大芳香环结构的裂解速率明显增加,且随CaO添加量的增多,煤焦的无序化程度和晶格缺陷均增大。  相似文献   
6.
采用优化的Stöber法制备了平均粒径为230 nm的单分散球形SiO2颗粒,并以此为内核,通过水解沉积法制备了不同壳层厚度的核-壳结构SiO2@Fe2O3催化剂。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2物理吸附和X射线衍射分析(XRD)等手段对催化剂进行表征,探讨了不同制备条件对SiO2@Fe2O3催化剂形貌的影响。结果表明,通过水解沉积法制备的SiO2@Fe2O3催化剂具有明显的核-壳结构,并且保持了原始SiO2核的球形形貌,Fe2O3纳米粒子通过-OH的氢键作用连接在SiO2表面,形成了2~10 nm厚的Fe2O3均匀连续包覆层。  相似文献   
7.
利用循环流化床对天池木垒高碱煤进行了气化实验研究,获得了天池木垒高碱煤在循环流化床上的结渣特性及碱金属迁移规律,并对实验中出现的床内颗粒聚团现象进行了分析。结果表明,不同存在形态的碱金属在煤气化过程中的迁移规律不同,水溶钠和醋酸铵溶钠在煤气化过程中以气态形式析出,不溶钠主要存在半焦中;随着气化温度升高,底渣和煤气中钠含量增加,飞灰中钠含量减少;尾部管道温度降低过程中,煤气中钠的冷凝速率明显高于钾;天池木垒高碱煤气化过程中容易引起床内颗粒聚团,床温越高,颗粒聚团现象越明显,床温波动越大;碱金属与灰分中矿物成分及床料中SiO2反应生成黏性低温共熔物是导致颗粒聚团的关键。  相似文献   
8.
以N-丁基咪唑、HCl和CuCl为原料两步法合成了离子液体[BIm]Cl/CuCl,并用傅里叶变换红外光谱FT-IR和傅里叶变换离子回旋共振质谱FT-ICR MS对其结构进行表征。采用差热扫描量热仪DSC、FT-IR以及紫外可见光谱UV-vis对吸附硫醇的[BIm]Cl/CuCl进行分析,讨论了[BIm]Cl/CuCl吸附硫醇的作用机制。以[BIm]Cl/CuCl为吸附剂,采用吸附蒸馏工艺脱除MTBE中的硫化物,MTBE硫含量可降低至5 μg/g以下,吸附剂进行多次循环使用且脱硫效果无明显降低。  相似文献   
9.
基于原煤和有机溶剂抽余物的等温吸附实验结果,对比分析溶剂极性与其煤抽余物吸附甲烷能力变化关系,探讨抽提溶剂极性差异对煤抽余物吸附甲烷能力控制的地球化学机理。结果表明,煤溶剂抽余物等温吸附甲烷曲线都遵循Langmuir方程,且二硫化碳(CS2)和苯(C6H6)溶剂抽提作用增大了煤吸附甲烷量,四氢呋喃(THF)和丙酮溶剂抽提作用减小了煤吸附甲烷量。实验发现,煤抽余物吸附甲烷能力变化与抽提溶剂极性成负相关关系,该现象可用相似相容原理解释:CS2和C6H6溶剂极性较弱,抽提出较多具有非极性结构(-CH3和-CH2-)的烷烃和芳烃,为甲烷在煤表面吸附增多了吸附位而增强了抽余物吸附甲烷能力,THF和丙酮溶剂极性较强,抽提出较多具有极性结构(-CHO、-OH、和-COOH)的非烃和沥青质,减少了吸附位而降低煤抽余物的甲烷吸附能力。  相似文献   
10.
用初湿含浸法制备了不同Ru添加量的Co/SiO2模型催化剂,然后进行N2物理吸附、XRD、H2-TPD、DRIFTS等表征和微分固定床费托(F-T)反应评价。F-T反应结果表明,催化剂中添加Ru后,CO转化率显著提高,TOF值增大,CO2和CH4选择性降低,烯/烷比(O/P)降低。FT-IR表征说明,催化剂添加Ru后Co-O键的强度减弱,相对应的H2-TPR也表明,催化剂的还原度得到显著提高。还原后的催化剂XRD结果进一步证实,加入Ru后,催化剂无钴氧化物被检出,并且当Ru添加量为0.5%(质量分数)时催化剂中金属钴主要以六方密堆(hcp)形式存在。CO-DRIFTS结果显示,Ru的加入使CO的吸收峰发生红移,即Ru促进了CO的解离。H2-TPD结果则表明,随着Ru添加量的增加,催化剂表面COads/Cos和CO*/Cos增大,这是CH4选择性降低的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号