首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   5篇
化学   6篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2012年   3篇
排序方式: 共有6条查询结果,搜索用时 109 毫秒
1
1.
采用无模板法制备了金纳米花, 其形状与粒径大小可以通过改变反应温度和还原剂抗坏血酸的用量来调控; 然后, 通过多巴胺的表面原位聚合反应制备了聚多巴胺修饰的金纳米花, 以提高其在近红外区的吸收能力及生物相容性. 采用透射电子显微镜(TEM)、 紫外-可见吸收光谱(UV-Vis)和纳米粒度/Zeta电位仪等对金纳米花和聚多巴胺修饰金纳米花的形态、 粒径和光学特性进行了表征; 通过傅里叶变换红外吸收光谱(FTIR)分析证明聚多巴胺修饰成功; X射线衍射(XRD)分析结果表明, 聚多巴胺修饰前后金纳米花的晶体结构未变; 最后, 采用噻唑蓝(MTT)法体外评价了聚多巴胺修饰金纳米花的细胞毒性. 研究结果表明, 反应温度越低, 金纳米花表面分支结构越丰富, 以0 ℃为最佳反应温度; 还原剂抗血酸的用量越高, 金纳米花粒径越小; 金纳米花粒径在60~100 nm范围内可调, 最大吸收波长为575~650 nm. 经聚多巴胺修饰后, 金纳米花的最大吸收波长发生了显著红移(>80 nm), 近红外区的吸收范围显著扩大. 通过调控多巴胺溶液浓度, 可将金纳米花表面聚多巴胺层的厚度控制在8~14 nm. 在808 nm激光辐照下, 聚多巴胺修饰金纳米花溶液可迅速升温至57 ℃. 此外, 细胞实验结果表明, 聚多巴胺修饰后金纳米花的细胞毒性更低. 用其对HeLa肿瘤细胞进行光热治疗后, 细胞存活率仅为10%. 因此, 聚多巴胺修饰金纳米花作为光热试剂在肿瘤治疗领域具有潜在的应用前景.  相似文献   
2.
受绿色荧光蛋白(GFP)荧光增强原理启发,采用开环聚合制备了两亲性聚乙二醇-生色团-聚己内酯(PEG-c-PCL)嵌段聚合物.通过核磁共振氢谱和碳谱(1H-,13C-NMR)、傅立叶变换红外光谱(FTIR)、凝胶渗透色谱(GPC)和紫外可见吸收光谱(UV-Vis)等证明其结构和性质.生色团和聚合物有相似的紫外吸收光谱,且最大吸收峰都在371 nm.荧光发射光谱表明,生色团的发射峰在427 nm,但聚合物的荧光发射峰出现了6 nm的红移,这是高分子化引起的结果.透射电镜(TEM)和动态光散射(DLS)证明了该两亲性嵌段聚合物能够组装成为纳米粒子.当聚合物组装成纳米粒子后,荧光强度增大了55倍,并且荧光发射峰出现了14 nm的红移,这些现象可归结于荧光生色团自由旋转的限制和组装导致的相互作用增强.  相似文献   
3.
建立了气相色谱-质谱法测定当归粉和当归原药材中邻苯二甲酸二丁酯(DBP)的方法。在国家标准的基础上,通过单因素试验,优化了提取方法和提取溶剂,确定了以正己烷为提取剂从水中液液萃取的方法。方法学试验结果表明,DBP浓度在0.01~1.00μg/mL范围内与色谱峰面积呈良好的线性关关系,线性相关系数r^2=0.9995,检出限为0.05μg/g(全扫描),不同水平的加标回收率在90%~100%之间,测定结果的相对标准偏差小于5%(n=3)。该方法适合当归粉和当归原药材中DBP的日常检测。  相似文献   
4.
通过逐步沉淀反应一锅法制备了一系列不同含量的镁掺杂纳米羟基磷灰石。通过硝酸镁、硝酸钙不同的投料物质的量比调控纳米颗粒的形态和尺寸。通过透射电子显微镜(TEM)、X射线衍射(XRD)等分析手段对镁掺杂纳米羟基磷灰石进行物理化学性能表征,用MTT法评价其体外细胞毒性。研究结果表明:镁掺杂纳米羟基磷灰石呈现束状纳米纤维形态、比表面积大、细胞毒性较低;将其作为载体负载抗癌药物顺铂,具有很好的载药能力,载药量可达54%,该载药纳米颗粒还具备缓释特性(72 h释药量达到41.72%)和很好抑制癌细胞生长的效果。  相似文献   
5.
非标记DNA检测是一种高灵敏度、高选择性的DNA检测方法, 具有重要的科学和社会意义. 本文采用交叉偶联法制备了水溶性阳离子共轭聚合物: 聚(9,9-双(6'-N,N,N-三甲胺盐-己烷基)-芴亚苯基)(PFP); 利用氧化加成聚合反应制备了水溶性阴离子共轭聚合物: 聚(3-噻吩乙酸钠)(P3TSA). 通过核磁共振氢谱(1H NMR)、傅立叶变换红外光谱(FTIR)等对其结构进行了表征. PFP与P3TSA通过静电相互作用形成稳定的高分子复合物. 利用紫外-可见光谱(UV-vis)和荧光发射光谱证明共轭高分子复合物能够发生能量转移. 保持PFP的浓度不变, 高分子复合物能量转移效率(ETEF)随着P3TSA浓度的增加而逐渐增大. 选取ETEF较高的样品, 考察了DNA探针用量对高分子复合物ETEF的影响. 随着DNA探针浓度的增加, ETEF逐渐减弱. 最后, 利用0.2 nmol DNA探针进行了DNA杂交配对检测. 实验结果表明, 这种检测方法可以明显区分完全互补配对、双碱基错配和非完全互补配对的目标DNA. 简而言之, 我们成功发展了一种基于共轭高分子复合物能量转移、具有高选择性的非标记DNA检测方法.  相似文献   
6.
通过逐步沉淀反应一锅法制备了一系列不同含量的镁掺杂纳米羟基磷灰石。通过硝酸镁、硝酸钙不同的投料物质的量比调控纳米颗粒的形态和尺寸。通过透射电子显微镜(TEM)、X射线衍射(XRD)等分析手段对镁掺杂纳米羟基磷灰石进行物理化学性能表征,用MTT法评价其体外细胞毒性。研究结果表明:镁掺杂纳米羟基磷灰石呈现束状纳米纤维形态、比表面积大、细胞毒性较低;将其作为载体负载抗癌药物顺铂,具有很好的载药能力,载药量可达54%,该载药纳米颗粒还具备缓释特性(72 h释药量达到41.72%)和很好抑制癌细胞生长的效果。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号