首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   27篇
化学   37篇
综合类   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2002年   1篇
排序方式: 共有38条查询结果,搜索用时 36 毫秒
1.
四个含NN型双齿配体的半夹心(η^6-p-cymene)Ru(II)化合物被成功制备.这四个化合物分别为(η^6-p-cymene)-Ru(C5H4N-C5H3N-OH)(1),(η^6-p-cymene)Ru(C5H4N-CH2-C5H4N)(2),(η^6-p-cymene)Ru(C5H4N-CH2-C5H3N-OH)(3)和(η^6-p-cymene)Ru(C5H4N-CH2-C5H3N-OCH3)(4).这些化合物通过核磁氢谱、碳谱和元素分析等手段表征,化合物2的结构被X射线单晶衍射证实.将这些化合物应用于催化氨醇与酮的环化反应,其中3的催化效率最高.在0.5mol%化合物3的存在下,制备了一系列喹啉和吡啶衍生物.  相似文献   
2.
3.
如何培养专业硕士的实践和创新能力是高等教育工作者不断探索的问题。本文以哈尔滨工业大学化学电源制造工程实践课程为例,针对该课程存在的问题,从教学手段、教学内容、教师队伍和评价体系四个方面进行课程改革。构建了研究生课内外全方位自主学习的教学体系,对有效利用实践课程提升学生的工程实践、创新及科研能力进行有益的探索。  相似文献   
4.
以半导体材料类石墨氮化碳纳米片(g-C3N4纳米片)为载体,通过微波-多元醇法构筑了Pt/g-C3N4纳米片催化剂. 通过TEM、XRD、XPS、紫外-可见吸收光谱等方法对Pt/g-C3N4纳米片催化剂的粒径尺寸、组成、结构、光学等性质进行分析. 通过对比可见光照和暗室条件下的甲酸电氧化活性,Pt/g-C3N4纳米片催化剂在可见光照射下展现出良好的催化性能. 该性能的提高一方面可能是由于g-C3N4纳米片在可见光照射下加速了电子从Pt转移给g-C3N4纳米片,Pt处于“电子匮乏”状态,可削弱CO与Pt之间的化学键能,减弱CO在Pt表面的吸附能力,促进了CO的氧化,提高了催化剂抗中毒能力;另一方面,g-C3N4纳米片在光照条件下分离出的空穴可有效氧化甲酸分子,提高甲酸氧化活性. 因此,可见光条件下可有效提高Pt/g-C3N4纳米片催化剂甲酸催化氧化活性,这为直接甲酸燃料电池的发展提供了新思路.  相似文献   
5.
Pt/C和Pt/CNTs电极的电化学稳定性研究   总被引:1,自引:0,他引:1  
邵玉艳  尹鸽平  高云智 《化学学报》2006,64(16):1752-1756
采用恒电位氧化法研究了Pt/C和Pt/CNTs电极的电化学稳定性. 相同条件下, Pt/C电极的氧化电流大约为Pt/CNTs电极的2倍; 120 h氧化后, Pt/C电极Pt的电化学表面积下降了21.3%, 而Pt/CNTs电极仅下降了7.6%, 表明Pt/CNTs电极性能衰减较慢. X射线光电子能谱(XPS)分析表明, Pt/C的载体碳黑表面氧增加量大于Pt/CNTs中碳纳米管(CNTs)表面氧的增加量, 说明碳黑的被氧化程度较高, 电化学稳定性差; Pt的表面化学状态没有发生变化; 碳纳米管本身的抗电化学氧化性也大于碳黑. 所以, 载体的被氧化程度不同是两种电极性能衰减不同的主要原因之一, 并且排除了Pt表面状态的影响.  相似文献   
6.
不同直径碳纳米管的抗电化学氧化性   总被引:1,自引:0,他引:1  
本文比较了由化学气相沉积法制备的不同直径(在100 nm以内)的多壁碳纳米管(CNT)的抗电化学氧化性.将CNT电极于1.2 V(vs.RHE)下电氧化120 h,记录氧化电流~时间变化曲线;X射线光电子能谱(XPS)分析氧化前后CNT的表面化学组成.结果表明,随着CNT直径的减小,其氧化电流降低,但其中以为10~20 nm的CNT电极氧化电流最小,表面氧的增量也最小,即被氧化的程度最低,抗电化学氧化性最强.根据不同直径CNT的缺陷位、不定型碳的丰度和碳原子的应力能,分析了其抗电化学氧化性差异的原因.  相似文献   
7.
通过循环伏安(CV)、电化学阻抗谱(EIS)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和傅立叶变换红外(FTIR)光谱研究了双乙二酸硼酸锂(LiBOB)基电解液在石墨表面的成膜性及其在常温(25 ℃)和高温(70 ℃)下对石墨循环性能的影响. 结果表明, LiBOB基电解液的成膜电位在1.7 V, 其中BOB-离子还原形成的草酸盐是固体电解质相界面(SEI)膜的有效成分之一. 电化学阻抗谱显示, 膜阻抗在循环过程中呈现减小趋势, 这有利于提高循环稳定性. 在常温和高温条件下, 石墨在该电解液体系中均表现出优于其在LiPF6基电解液体系中的循环性能.  相似文献   
8.
以羟基化多壁碳纳米管(MWNT-OH)为引发剂,通过原位负离子开环聚合制备了生物相容性多羟基超支化聚缩水甘油接枝的碳纳米管(MWNT-HPG),利用酯化反应将荧光分子罗丹明6B标记于聚合物上,然后聚合物上的羟基和丁二酸酐反应将其转化为羧基.用TGA、FTIR、TEM、SEM等手段对产物进行了表征.用靶向表皮生长因子受体(EGFR)的小分子多肽D4修饰了所得的荧光功能化碳纳米管,并将其做为受体介导靶向肿瘤细胞的纳米载体,通过噻唑蓝(MTT)比色法评价功能化碳纳米管作为载体的安全性.用荧光显微镜观察其与人肺腺癌细胞SPCAI细胞的结合状态.结果证明了其有希望成为受体介导靶向肿瘤系统的纳米载体.  相似文献   
9.
应用亲和毛细管电泳(ACE)分析方法,对表皮生长因子受体(EGFR)和新多肽配体GE11之间的结合能力进行分析。结果表明,EGFR与多肽配体GE11之间存在特异性相互作用,考察EGFR在不同浓度GE11溶液中的迁移情况,采用非线性、双倒数、Y-倒数和X-倒数4个数据处理方法得到较好的数据拟合,并测得结合常数。该文为筛选多肽配体以及测定受体与多肽配体之间的结合常数提供了简便的方法,将有力推动肿瘤靶向药物输送的研究。  相似文献   
10.
二甲醚电氧化及其阳极催化剂研究   总被引:6,自引:0,他引:6  
Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reduction method with formaldehyde as the reductant. DME electro-oxidation and adsorption at Pt electrode and Pt electro-catalysts were investigated by Cyclic Voltammetry(CV), Quasi-steady state polarization and Gas Chromatography(GC). CV showed that there were two current peaks of DME electro-oxidation at Pt electrode around 0.8V (vs RHE); DME was adsorbed at Pt electrode more weakly and slowly than oxygen, methanol, even hydrogen; the onset potential of DME oxidation was 50mV less than that of methanol, and DME peak potential 110 mV lower, thus more advantageous for using in fuel cells than methanol. GC showed that small amount of HCHO was generated during DME electro-oxidation. The mechanism of DME electro-oxidation was proposed. Among the three electro-catalysts (Pt/C, PtRu/C and PtSn/C), Pt alloy catalysts, especially PtRu/C, showed a higher performance toward DME electro-oxidation, as in the case of methanol. Temperature experiments showed that both DME electro-oxidation and adsorption on Pt and Pt alloy catalysts were favored with increased temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号