首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   5篇
  2021年   1篇
  2011年   2篇
  2010年   2篇
排序方式: 共有5条查询结果,搜索用时 8 毫秒
1
1.
钙钛矿量子点发光二极管(QLEDs)因其色纯度高、颜色控制精准、色域广以及溶液可加工等特点, 在显示和照明等领域有着极大的应用前景. 针对红光钙钛矿CsPbI3量子点纯化过程中相变和表面配体损失造成的荧光退化问题, 本工作发展了一种甲苯和乙酸乙酯协同的混合溶剂纯化策略, 能够避免纯化过程中的相变问题, 获得了纯立方相的CsPbI3量子点; 此外, 进一步提出了油胺碘(OAmI)调控量子点表面态的配体补偿工艺, 解决了配体损失导致的荧光淬灭问题, 发现在引入400 μL的OAmI时, 量子点兼具高的发光效率(PLQY为70%)和优异的电学性能, 电驱动下的激子复合几率显著增加, 最终实现了亮度为3090 cd/m 2和外量子效率为15.67%的QLED. 这种钙钛矿CsPbI3量子点精细纯化的方案对开发高效量子点材料和实现高性能光电子器件具有重要的指导意义.  相似文献   
2.
近年来,氧化锌(ZnO)由于依赖于尺寸、形状的光电特性而备受关注。纳米ZnO尺寸较小、表面能高,易团聚,使其在光电、生物等方面的应用受到限制。将其与聚合物复合或组装,不但能稳定纳米ZnO,而且可以使纳米ZnO/聚合物复合材料具有优良性能。本文综述了近年来纳米ZnO/聚合物复合材料的制备方法(聚合物辅助、表面接枝、转移分散等法)及纳米ZnO/聚合物器件在电致发光、光伏电池、荧光成像等方面的应用,并对纳米ZnO/聚合物复合材料的发展做了展望。  相似文献   
3.
采用简单的低温(温度未超过100 °C)溶液法在具有较好柔韧度的基于聚对苯二甲酸乙二醇酯(PET)衬底的铟锡氧化物(ITO)导电膜(PET/ITO)上成功制备了聚丙烯酰胺(PAM)修饰的ZnO微纳阵列. 用X射线衍射(XRD)仪和扫描电子显微镜(SEM)对ZnO微纳阵列的晶体结构和表面形貌进行了表征, 结果表明ZnO阵列的平均直径为150 nm, 长度为3 μm, 端面具有六边形结构, 沿[0001]方向择优生长, 较好地垂直在PET/ITO上; 探讨了ZnO微纳阵列在PAM存在下的形成机理以及所制备的ZnO阵列在柔性光电器件方面的应用; ZnO微纳阵列的光致发光(PL)性能表明, 在没有PAM的存在下, 具有蓝光(457 nm)和绿光(530 nm)缺陷发射峰, 这可能是电子分别从扩展态锌间隙(Zni)到价带和从导带到锌位氧(OZn)的跃迁引起的, 而在PAM存在下所制备的PAM/ZnO阵列仅仅在400 nm处有一个发射峰, 这是由于电子从Zni到价带的跃迁引起的. 基于PAM/ZnO的柔性器件具有较好的二极管特性, 表明其在柔性光电器件方面的应用极具潜力.  相似文献   
4.
化学接枝改进ZnO-有机硅纳米复合材料的光学性能   总被引:1,自引:0,他引:1  
采用N-(三甲氧基硅丙基)-4-叠氮-2,3,5,6-四氟苯甲酰胺(PFPA-silane)改性纳米氧化锌,并将PFPA-silane接枝在有机硅聚合物链上.接枝反应改变了纳米复合物的折光指数,并使ZnO纳米粒子与有机硅基体的折光指数更加匹配.这减少了纳米氧化锌粒子对光的散射作用,增加了纳米ZnO-有机硅纳米复合物的透明性.所制备的复合物通过接枝改性后透光率最多可提高50%.研究结果表明无机物和聚合物的折光指数的匹配程度可以通过偶联剂与聚合物基体的反应来进行调控.  相似文献   
5.
宋继中  贺英  潘照东  朱棣  陈杰  王均安 《化学学报》2011,69(13):1582-1588
首先用硅烷偶联剂(KH550)对所制备粒径在100 nm以下的纳米ZnO进行表面修饰(M-ZnO), 然后在弱磁场(0.4 T)下乙醇/水/十二烷基苯磺酸(DBSA)体系中原位聚合分别制备了重均分子量达3×104的聚苯胺(PANI)及聚苯胺/纳米ZnO复合材料. 红外分析表明纳米ZnO的加入使聚苯胺的特征峰向低波数方向移动|溶解性测试表明聚苯胺及其复合材料在氯仿和N-甲基吡咯烷酮中均有较高的溶解度(高于80%)|X-射线衍射表明磁场能有效地改善聚苯胺主链的规整性, 使聚苯胺分子链有更好离域的π电子体系|M-ZnO的引入显著地提高了PANI的电导率(可达220 S/m), 同时具有较好的透光性(80%)|这表明PANI/纳米ZnO复合材料在柔性光电器件领域具有潜在的应用价值.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号