首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   3篇
物理学   8篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 140 毫秒
1.
The solvation effects observed in water‐organic solutions were studied by combining data for reaction kinetics and dissolution equilibria by means of a linear free‐energy (similarity) analysis. Kinetic data for the pH‐independent hydrolysis of (4‐methoxyphenyl)‐2,2‐dichloroacetate measured in this work and solubility data for naphthalene, and other substrates of low polarity, in aqueous binary mixtures of methanol, ethanol, acetonitrile, dimethyl sulfoxide (DMSO), and 1,4‐dioxane were used. Linear similarity relationships were discovered for these data over the full range of solvent compositions studied. To gain insight into the similarities observed between these different phenomena, molecular dynamics simulations were carried out for naphthalene and an ester in water–acetonitrile solutions. The results revealed considerable preferential solvation of these substrates by the co‐solvent. Linear relationships between the experimental data and the mole fractions of acetonitrile in the solvation shells of substrates were found. Surprisingly, a linear relationship was found between the mole fractions of acetonitrile in the solvation shells of the ester and naphthalene. This linearity indicated that a similar solvation mechanism governs even such different phenomena as dissolution and reaction kinetics. The relationships between the experimental data and the results of the molecular dynamics calculations found in this work explained the solvent effect observed in water‐organic solutions on the molecular level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
Composite material based on a TiO2 matrix doped with Sm3+ ions and co-doped with silver was investigated. Samarium ions together with nano- and micro-aggregates of silver were incorporated into the titanium alkoxide during the sol-gel process. Samarium ions were excited either directly (λ exc = 488 nm) or through the TiO2 host (λ exc = 355 nm). It was revealed that samarium fluorescence (λ exc = 488 nm) in gelled TiO2 films is enhanced by up to 20 times in the vicinity of silver inclusions. Sensitizing and plasmonic mechanisms of enhancement in Sm3+ fluorescence are discussed.  相似文献   
3.
A LFE (Linear Free Energy) analysis of kinetic data for different organic reactions in various organic aqueous solutions was carried out. The rate constants of these reactions were compared with those for the solvolysis of tert-butyl chloride in the same solvents in terms of the LFE Relationships, and linear plots were observed in a wide range of the co-solvent content. This similarity points to a common nature of the solvent effect in these reactions in variety of water–organic mixtures, regardless of largely different reaction mechanisms. We explain these results by the prevalence of hydrophobic stabilization of the initial state of these reactions in water-rich solvent mixtures. Recently the same conclusion was also made on the basis of investigations into sonication effects in kinetics of organic reactions. A considerable contribution of hydrophobic effects to the Y scale by Grunwald and Winstein was deduced.  相似文献   
4.
Effect of ultrasound on ester hydrolysis in aqueous ethanol.   总被引:1,自引:0,他引:1  
Kinetics of the acid-catalyzed hydrolysis of ethyl acetate in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. Rate enhancements by 1.03-2.4 times were found with a minimum at 18 wt.% and a maximum at 45 wt.% of ethanol. The results suggest that ultrasonic acceleration of the reaction may be interrelated to the perturbation of the molecular structure of the binary solvent.  相似文献   
5.
Kinetic effects of sonication on ester hydrolysis and tert‐butyl chloride solvolysis, studied in ethanol–water binary solvent, are discussed in terms of quantitative relationships between their magnitude and the hydrophobicity of reagents. A number of conclusions were drawn from the observed linear free‐energy (LFE) relationships. Independent of reaction mechanism, the decrease in reaction rates with increasing ethanol content in the solvent is mainly due to hydrophobic stabilization of the ground state. While hydrophobic species can be hidden in the ethanol clusters present in the region XEtOH > 0.15, at lower ethanol contents hydrophobic reagents are weakly solvated and the hydrophobic stabilization can be easily overcome by sonication. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Kinetics of the benzoin condensation of benzaldehyde in presence of KCN as the catalyst in water and in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. A statistically significant 20% decrease of the rate was observed in water. The retardation effect of ultrasound gradually decreases up to 45 wt% ethanol content. We report an evidence of ultrasonic retardation of reactions and thereby a direct evidence for sonochemical processes in the bulk solution. Ultrasound can disturb solvation of the species in the solution. If breaking down the stabilization of the encounter complexes between the reagents, sonication hinders the reaction while perturbation of the solvent-stabilization of the reagents accelerates the reaction.  相似文献   
7.
The kinetics of KCN-catalyzed benzoin condensation of benzaldehyde in water and ethanol-water binary mixtures was investigated both under ultrasound at 22 kHz and without sonication. Thermodynamic activation parameters were calculated from kinetic data obtained at 35, 50, and 65 degrees C. Evidence that ultrasound can retard reactions is reported and hence a direct proof that sonochemical processes occur in the bulk solution. Former results and literature data for ester hydrolyses and tert-butyl chloride solvolysis are involved in the discussion. A quantitative relationship between sonication effects and the hydrophobicity of reagents is presented for the first time. Ultrasound affects hydrophobic interactions with the solvent, which are not manifested in conventional kinetics. When it suppresses the stabilization of the encounter complexes between reagents, sonication hinders the reaction but accelerates it when it perturbs the hydrophobic stabilization of the ground state of a reagent.  相似文献   
8.
Kinetic data for organic reactions in various binary water-organic solvent mixtures were collected and quantitatively analysed in terms of linear-free-energy relationships by using tert-butyl chloride (2-chloro-2-methylpropane) solvolysis as the reference system. Linear similarity plots for these kinetic data were determined for solvent systems ranging from pure water mixtures up to considerable amount of cosolvent, and 161 similarity coefficients were calculated from slopes of these plots. The existence of these linear plots demonstrated that the solvent effects are of some common nature in all analysed reaction mixtures independent of the reaction type and the cosolvent used. Therefore it was concluded that the observed effects could be connected to the specific solvating properties of water, which govern reactivity even in significant dilution of water by an organic cosolvent. This conclusion was supported by the linear interrelationship between the slopes of similarity plots of different reactions, and hydrophobicity parameters log P of the reacting compounds. The relative solvent effects observed in binary water-organic solvent mixtures were for the first time directly related to the structure of reacting compounds.   相似文献   
9.
The kinetics of base-catalyzed hydrolysis of 4-nitrophenyl acetate was studied in water and water-ethanol mixtures under ultrasound (21.1 kHz) using a probe equipped with a quartz horn and, by comparison, without sonication. The ethanol concentration was varied from 0 to 50 wt % and pH from 7.5 to 9. The increase of reaction rate was inversely proportional to the strength of substrate interactions with the solvent structure. It was found that the effect of ultrasound could be related to the perturbation of solute-solvent interactions. This conclusion seems to apply to both acid-catalyzed and base-catalyzed hydrolysis reactions. Parallel experiments with a titanium horn revealed the catalytic action of undetermined chemical species formed from dispersed titanium metal.  相似文献   
10.
Molecular dynamics (MD) simulation of the structure of ethyl acetate solutions in two water–ethanol mixtures was performed at 280 and 330 K. The MD simulations revealed that ethyl acetate was preferentially solvated by ethanol, water being mainly located in the next solvation layer. With increasing temperature ethanol was gradually replaced by water in the first solvation shell. These findings explain the decrease in the rate of ester hydrolysis with increasing molar ratio of ethanol in the solution as the reaction rate was linearly dependent on the relative ethanol content in the first solvation shell of the ester. Predominance of ethanol results in decreased polarity and water activity in the shell and accordingly in a decreased reaction rate. Based on the results of the MD simulations, the principal conclusion of this work is that ultrasound enhances the kinetic energy (the effective temperature) of species in the solution and, in this way, evokes shifts in the solvation equilibria thus affecting the reaction rate. It appears that ultrasound does not completely break down the solvent shells or clusters in the solution as previously believed. Phenomena of thermo-solvatochromism and reaction rate levelling by ultrasound in binary solvents are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号