首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
化学   13篇
物理学   42篇
  2020年   1篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   8篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
排序方式: 共有55条查询结果,搜索用时 390 毫秒
1.
2.
3.
4.
5.
6.
7.
Although great care is generally taken to buffer aqueous enzyme reactions, active control of acid-base conditions for biocatalysis in low-water media is rarely considered. Here we describe a new class of solid-state acid-base buffers suitable for use in organic media. The buffers, composed of a zwitterion and its sodium salt, are able to set and maintain the ionisation state of an enzyme by the exchange of H+ and Na+ ions. Surprisingly, equilibrium is established between the different solid components quickly enough to provide a practical means of controlling acid-base conditions during biocatalysed reactions. We developed an organosoluble chromoionophore indicator to screen the behaviour of possible buffer pairs and quantify their relative H+/Na- exchange potential. The transesterification activity of an immobilised protease, subtilisin Carlsberg, was measured in toluene in the presence of a range of buffers. The large observed difference in rates showed good correlation with that expected from the measured exchange potentials. The maximum water activities accessible without formation of hydrates or solutions of the buffers are reported here. The indicator was also used to monitor, for the first time in situ, changes in the acid-base conditions of an enzyme-catalysed transesterification reaction in toluene. We found that even very minor amounts of an acidic by-product of hydrolysis were leading to protonation of the enzyme, resulting in rapid loss of activity. Addition of solid-state buffer was able to prevent this process, shortening reaction times and improving yields. Solid-state buffers offer a general and inexpensive way of precisely controlling acid-base conditions in organic solvents and thus also have potential applications outside of biocatalysis.  相似文献   
8.
From a sample of 1172 +/- 61 D(+)-->pi(-)pi(+)pi(+) decays, we find gamma(D(+)-->pi(-)pi(+)pi(+))/gamma(D(+)-->K-pi(+)pi(+)) = 0.0311 +/- 0.0018(+0.0016)(-0.0026). Using a coherent amplitude analysis to fit the Dalitz plot of these decays, we find strong evidence that a scalar resonance of mass 478(+24)(-23) +/- 17 MeV/c(2) and width 324(+42)(-40) +/- 21 MeV/c(2) accounts for approximately half of all decays.  相似文献   
9.
13C chemical shift tensor data from 2D FIREMAT spectra are reported for 4,7-di-t-butylacenaphthene and 4,7-di-t-butylacenaphthylene. In addition, calculations of the chemical shielding tensors were completed at the B3LYP/6-311G** level of theory. While the experimental tensor data on 4,7-di-t-butylacenaphthylene are in agreement with theory and with previous data on polycyclic aromatic hydrocarbons, the experimental and theoretical data on 4,7-di-t-butylacenaphthene lack agreement. Instead, larger than usual differences are observed between the experimental chemical shift components and the chemical shielding tensor components calculated on a single molecule of 4,7-di-t-butylacenaphthene, with a root mean square (rms) error of +/-7.0 ppm. The greatest deviation is concentrated in the component perpendicular to the aromatic plane, with the largest value being a 23 ppm difference between experiment and theory for the 13CH2 carbon delta11 component. These differences are attributed to an intermolecular chemical shift that arises from the graphitelike, stacked arrangement of molecules found in the crystal structure of 4,7-di-t-butylacenaphthene. This conclusion is supported by a calculation on a trimer of molecules, which improves the agreement between experiment and theory for this component by 14 ppm and reduces the overall rms error between experiment and theory to 4.0 ppm. This intermolecular effect may be modeled with the use of nuclei independent chemical shieldings (NICS) calculations and is also observed in the isotropic 1H chemical shift of the CH2 protons as a 4.2 ppm difference between the solution value and the solid-state chemical shift measured via a 13C-1H heteronuclear correlation experiment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号