首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   2篇
化学   59篇
晶体学   1篇
数学   14篇
物理学   40篇
  2023年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   1篇
  2013年   12篇
  2012年   11篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   14篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  1997年   1篇
  1995年   1篇
排序方式: 共有114条查询结果,搜索用时 531 毫秒
1.
Standardising quality of measurements at both the national and international level results in a unity in measurement that may be regarded a synonym of traceability. In gas analysis, the key issue in achieving this aim is production of gaseous reference materials. Establishing a network of secondary measurement standards at gaseous CRM producers’ sites in Ukraine might be interesting for those involved in gas analysis activities. Inevitably, problems concerning the recognition of measuring capabilities of both national metrological institutes and local CRM producers are now an international issue. Thus, the problems of national adoption of international standards, as well as harmonisation between different international documents are currently relevant, and Ukrainian experience may be useful to others in this field. Presented at the 3rd International Conference on Metrology, November 2006, Tel Aviv, Israel.  相似文献   
2.
最近Ruamps和同事发现三角双锥构型的Ni(Ⅱ)配合物[Ni(Me6tren)Cl]ClO41,Me6tren=tris(2-(dimethylamino)ethyl)amine)具有大的单轴磁各向异性(J.Am.Chem.Soc.,2013,135:3017-3026)。他们利用HF-EPR研究获得横向零场分裂(ZFS)参数E=1.56(5)cm-1但未能确定轴向零场分裂参数D。在本工作中,我们利用0~17.5 T和5 K的变磁场远红外光谱(FIRMS)来检测自旋基态S=1中的MS=±1和MS=0态之间的磁跃迁。在FIRMS中直接观察到Zeeman分裂态之间的跃迁,得出轴向ZFS参数D=-110.7(3)cm-1。我们对1的晶体结构进行了Hirshfeld表面分析,揭示了1分子中的阳离子与阴离子之间以及分子之间的相互作用。  相似文献   
3.
4.
Physics of Atomic Nuclei - The paper is devoted to the study of the influence of pulsed instability of neutron generation on the efficiency of small transportable HMCs. Experimental diagrams of the...  相似文献   
5.
6.
We report measurements of the interaction-induced quantum Hall effect in a spin-polarized AlAs two-dimensional electron system where the electrons occupy two in-plane conduction band valleys. Via the application of in-plane strain, we tune the energies of these valleys and measure the energy gap of the quantum Hall state at filling factor nu = 1. The gap has a finite value even at zero strain and, with strain, rises much faster than expected from a single-particle picture, suggesting that the lowest energy charged excitations at nu = 1 are "valley Skyrmions."  相似文献   
7.
We report measurements of the spin susceptibility, chi proportional, variant g(v)g*m*, in an AlAs two-dimensional electron system where, via the application of in-plane stress, we transfer electrons from one ellipsoidal conduction-band valley to another (g(v) is the valley degeneracy, and m* and g* are the electron effective mass and g factor). At a given density, when the two valleys are equally populated (g(v)=2), the measured g*m* is smaller than when only one valley is occupied (g(v)=1). This observation counters the common assumption that a two-valley two-dimensional system is effectively more dilute than a single-valley system because of its smaller Fermi energy.  相似文献   
8.
We report the observation of commensurability oscillations in an AlAs two-dimensional electron system where two conduction-band valleys with elliptical in-plane Fermi contours are occupied. The Fourier power spectrum of the oscillations shows two frequency components consistent with those expected for the Fermi contours of the two valleys. From an analysis of the spectra we deduce m(l)/m(t)=5.2+/-0.5 for the ratio of the longitudinal and transverse electron effective masses, a fundamental parameter that cannot be directly measured from other transport experiments.  相似文献   
9.
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3)2X2 ( Co-X ; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X , showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.  相似文献   
10.
Pogorelsky  I. V.  Polyanskiy  M. N.  Babzien  M.  Yakimenko  V.  Dover  N. P.  Palmer  C. A. J.  Najmudin  Z.  Schreiber  J.  Shkolnikov  P.  Dudnikova  G. 《Laser Physics》2011,21(7):1288-1294
A picosecond CO2 laser was used successfully in a number of experiments exploring advanced methods of particle acceleration [1]. Proton acceleration from gas-jet plasma exemplifies another advantage of employing the increase in laser wavelength from the optical to the mid-IR region. Recent theoretical- and experimental-studies of ion acceleration from laser-generated plasma point to better ways to control the ion beam’s energy when plasma approaches the critical density. Studying this regime with solid-state lasers is problematic due to the dearth of plasma sources at the critical electron density ∼1021 cm−3, corresponding to laser wavelength λ = 1 μm. CO2 laser offers a solution. The CO2 laser’s 10 μm wavelength shifts the critical plasma density to 1019 cm−3, a value attainable with gas jets. Capitalizing on this approach, we focused a circular polarized 1-TW CO2 laser beam onto a hydrogen gas jet and observed a monoenergetic proton beam in the 1–2 MeV range. Simultaneously, we optically probed the laser/plasma interaction region with visible light, revealing holes bored by radiation pressure, as well as quasi-stationary soliton-like plasma formations. Our findings from 2D PIC simulations agree with experimental results and aid in their interpretation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号