首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
力学   35篇
数学   1篇
物理学   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Summary For a material which is incapable of sustaining tensile stresses (no-tension material, NTM), the local stability postulate is utilized in order to derive the appropriate equations which relate, within general 3D situations, cracking strain states and stress states to each other. Several alternative forms of these equations are discussed, either in terms of stress and strain components, or in terms of stress and strain invariants. The results obtained improve known results regarding the NTM's.
Sommario Per un materiale non resistente a trazione in stati di tensione e deformazione triassiali viene utilizzato il postulate di stabilità locale per ottenere appropriate equazioni che mettono in relazione gli stati di deformazione fragile (o fessurativa) con gli stati di tensione. Sono discusse alcune forme alternative di queste equazioni espresse in termini di componenti di tensione e di deformazione, oppure in termini di invarianti delle tensioni e delle deformazioni. I risultati ottenuti comprovano e arricchiscono noti risultati riguardanti i materiali che non resistono a trazione.
  相似文献   
2.
Summary Dynamic shakedown of discrete elastic-perfectly plastic structures under a specified load history is studied using the dynamic characteristics of the structure provided by modal analysis. Several statical and kinematical theorems are presented, including lower and upper bound theorems for the minimum adaptation time of the structure. In the formulation of the kinematical theorems a crucial role is played by the appropriate definition of admissible plastic strain cycle.
Sommario Si studia il problema dell'adattamento dinamico (shakedown) di una struttura discreta elasto-perfetta-mente plastica e soggetta ad una storia di carichi prestabilita, facendo uso a tale scopo delle caratteristiche dinamiche della struttura fornite dalla analisi modale. Vengono presentati svariati teoremi, sia di tipo statico che cinematico, tra cui taluni teoremi di delimitazione superiore ed inferiore del tempo minimo di adattamento. Nella formulazione dei teoremi cinematici ha un ruolo cruciale la corretta definizione di ciclo deformativo ammissibile.


This paper is part of a research project sponsored by the National (Italian) Research Council, C.N.R., Group of Structural Engineering, and by the National Department of Education (M.P.I.).  相似文献   
3.
Summary The finite element method approach is used to obtain formulations of analysis problems relative to elastic-plastic structures when subjected to prescribed programmes of loads, and under the restrictive hypotheses:a) the yielding surfaces are piecewise linearized, andb) the plastic flow-laws are supposed to be of holonomic type within a single “finite” time interval. For mulations are given as linear complementarity problems and quadratic programming problems: one pair of formulations in terms of velocity and plastic multiplier rate histories, and another pair in terms of plastic multiplier rate histories only. The solutions are shown to be characterized by two minimum principles for displacement and plastic strain rate histories. After some general remarks about computational procedures, the paper is concluded with some suggestions for future developments.
Sommario Si usa il metodo degli elementi finiti per formulare problemi di analisi relativi a strutture elasto-plastiche soggette a prescritti programmi di carico, sotto le ipotesi restrittive:a) le superfici di plasticizzazione sono linearizzate a tratti, eb) la legge del flusso plastico è olonoma all'interno del singolo intervallo di tempo “finito”. Si danno formulazioni come problemi di complementarità lineare e come problemi di programmazione quadratica: due formulazioni sono in termini di storia delle velocità e dei coefficienti di attivazione plastica, altre due sono in termini di storia dei coefficienti di attivazione plastica soltanto. Si dimostra che le soluzioni sono caratterizzate da due principi di minimo per la storia delle velocità di deformazione. Dopo alcune osservazioni generali sui procedimenti di calcolo, il lavoro si conclude con dei suggerimenti per futuri sviluppi.
  相似文献   
4.
For a class of elastoplastic solids exhibiting a mixed kinematic-isotropic behavior, a convergent bounding principle is presented. This principle, formulated by means of a suitable perturbation method, is able to provide upper bounds on different kinds of the actual plastic deformation induced by a specified load history. These bounds, expressed in terms of a “fictitious solution,” can be rendered as close to the actual deformations as desired, but at the cost of increasing computational efforts. A bounding principle for repeated loads and a shakedown theorem are also presented as special cases of the convergent bounding principle.  相似文献   
5.
Static and kinematic shakedown theorems are given for a class of generalized standard materials endowed with a hardening saturation surface in the framework of strain gradient plasticity. The so-called residual-based gradient plasticity theory is employed. The hardening law admits a hardening potential, which is a C1-continuous function of a set of kinematic internal variables and of their spatial gradients, and is required to satisfy a global sign restriction (but not to be necessarily convex). The totally produced, the accumulated and the freely moving dislocations per unit volume, distinguished as statistically stored and geometrically necessary ones, are in this way accounted for. Like for a generalized standard material, the shakedown safety factor is found to depend on the (generally size dependent) yield and saturation limits, but not on the particular differential-type hardening law of the material.  相似文献   
6.
Within the framework of isotropic strain gradient plasticity, a rate-independent constitutive model exhibiting size dependent hardening is formulated and discussed with particular concern to its strengthening behavior. The latter is modelled as a (fictitious) isotropic hardening featured by a potential which is a positively degree-one homogeneous function of the effective plastic strain and its gradient. This potential leads to a strengthening law in which the strengthening stress, i.e. the increase of the plastically undeformed material initial yield stress, is related to the effective plastic strain through a second order PDE and related higher order boundary conditions. The plasticity flow laws, with the role there played by the strengthening stress, are addressed and shown to admit a maximum dissipation principle. For an idealized elastic perfectly plastic material with strengthening effects, the plastic collapse load problem of a micro/nano scale structure is addressed and its basic features under the light of classical plastic limit analysis are pointed out. It is found that the conceptual framework of classical limit analysis, including the notion of rigid-plastic behavior, remains valid. The lower bound and upper bound theorems of classical limit analysis are extended to strengthening materials. A static-type maximum principle and a kinematic-type minimum principle, consequences of the lower and upper bound theorems, respectively, are each independently shown to solve the collapse load problem. These principles coincide with their respective classical counterparts in the case of simple material. Comparisons with existing theories are provided. An application of this nonclassical plastic limit analysis to a simple shear model is also presented, in which the plastic collapse load is shown to increase with the decreasing sample size (Hall–Petch size effects).  相似文献   
7.
The classical shakedown theory is extended to a class of perfectly plastic materials with strengthening effects (Hall–Petch effects). To this aim, a strain gradient plasticity model previously advanced by Polizzotto (2010) is used, whereby a featuring strengthening law provides the strengthening stress, i.e. the increase of the yield strength produced by plastic deformation, as a degree-zero homogeneous second-order differential form in the accumulated plastic strain with associated higher order boundary conditions. The extended static (Melan) and kinematic (Koiter) shakedown theorems are proved together with the related lower bound and upper bound theorems. The shakedown limit load problem is addressed and discussed in the present context, and its solution uniqueness shown out. A simple micro-scale structural system is considered as an illustrative example. The shakedown limit load is shown to increase with decreasing the structural size, which is a manifestation of the classical Hall–Petch effects in a context of cyclic loading.  相似文献   
8.
Summary Solids of elastic-perfectly plastic creeping material subjected to variable loads are considered within the infinitesimal displacement framework and a bounding principle is presented which holds below and above the shakedown limit. Through the choice of some free parameters, this principle generates a number of deformation bounds with practical meanings, some of wich coincide with known results for creeping and noncreeping material, while others constitute new results or generalizations of known results. The topic will be further studied in a subsequent paper [35].
Sommario Si considerano solidi elasto-plasto-viscosi (senza incrudimento) sottoposti a carichi variabili e, nell'ipotesi di spostamenti infinitesimi, viene formulato un principio di maggiorazione valevole sia per carichi al di sotto, che al di sopra del limite di adattamento (shakedown). Mediante la scelta di taluni parametri liberi, il suddetto principio dà luogo a molteplici casi particolari di valore pratico, alcuni dei quali ripropongono risultati già noti per materiali viscosi e non, altri costituiscono risultati nuovi o generalizzazioni di risultati noti. L'argomento sarà ripreso in un successivo lavoro [35].


This paper is part of a research project sponsored by the National (Italian) Research Council, C.N.R., Structural Engineering Group.  相似文献   
9.
A unified thermodynamic framework for gradient plasticity theories in small deformations is provided, which is able to accommodate (almost) all existing strain gradient plasticity theories. The concept of energy residual (the long range power density transferred to the generic particle from the surrounding material and locally spent to sustain some extra plastic power) plays a crucial role. An energy balance principle for the extra plastic power leads to a representation formula of the energy residual in terms of a long range stress, typically of the third order, a macroscopic counterpart of the micro-forces acting on the GNDs (Geometrically Necessary Dislocations). The insulation condition (implying that no long range energy interactions are allowed between the body and the exterior environment) is used to derive the higher order boundary conditions, as well as to ascertain a principle of the plastic power redistribution in which the energy residual plays the role of redistributor and guarantees that the actual plastic dissipation satisfies the second thermodynamics principle. The (nonlocal) Clausius-Duhem inequality, into which the long range stress enters aside the Cauchy stress, is used to derive the thermodynamic restrictions on the constitutive equations, which include the state equations and the dissipation inequality. Consistent with the latter inequality, the evolution laws are formulated for rate-independent models. These are shown to exhibit multiple size effects, namely (energetic) size effects on the hardening rate, as well as combined (dissipative) size effects on both the yield strength (intrinsic resistance to the onset of plastic strain) and the flow strength (resistance exhibited during plastic flow). A friction analogy is proposed as an aid for a better understanding of these two kinds of strengthening effects. The relevant boundary-value rate problem is addressed, for which a solution uniqueness theorem and a minimum variational principle are provided. Comparisons with other existing gradient theories are presented. The dissipation redistribution mechanism is illustrated by means of a simple shear model.  相似文献   
10.
A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are determined, which include the well-known Eringen stress gradient constitutive equations, as well as the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value problem is shown to admit a unique solution characterized by a Hellinger–Reissner type variational principle. The main differences between the Eringen stress gradient model and the concomitant Aifantis strain gradient model are pointed out. A rigorous formulation of the stress gradient Euler–Bernoulli beam is provided; the response of this beam model is discussed as for its sensitivity to the stress gradient effects and compared with the analogous strain gradient beam model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号