首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Visible light excitable rhodamine B derivative (TARDHD) has been developed for fluorescence and naked eye detection of histidine in aqueous medium. TARDHD shows 45 fold fluorescence enhancement in the presence of histidine. It forms Schiff base with histidine and stabilizes via intra-molecular H-bonding. TARDHD can efficiently detect intracellular histidine.  相似文献   
2.
Guha S  Lohar S  Hauli I  Mukhopadhyay SK  Das D 《Talanta》2011,85(3):1658-1664
An efficient Hg2+ selective fluorescent probe (vanillin azo coumarin, VAC) was synthesized by blending vanillin with coumarin. VAC and its Hg2+ complex were well characterized by different spectroscopic techniques like 1H NMR, QTOF-MS ES+, FTIR and elemental analysis as well. VAC could detect up to 1.25 μM Hg2+ in aqueous methanol solution through fluorescence enhancement. The method was linear up to 16 μM of Hg2+. Negative interferences from Cu2+, Ni2+, Fe3+, and Zn2+ were eliminated using EDTA as a masking agent. VAC showed a strong binding to Hg2+ ion as evident from its binding constant value (2.2 × 105), estimated using Benesi-Hildebrand equation. Mercuration assisted restricted rotation of the vanillin moiety and inhibited photoinduced electron transfer from the O, N-donor sites to the coumarin unit are responsible for the enhancement of fluorescence upon mercuration of VAC. VAC was used for imaging the accumulation of Hg2+ ions in Candida albicans cells.  相似文献   
3.
Ni(2+)-induced intramolecular excimer formation of a naphthalene-based novel fluorescent probe, 1-[(naphthalen-3-yl)methylthio]-2-[(naphthalen-6-yl)methylthio]ethane (L), has been investigated for the first time and nicely demonstrated by excitation spectra, a fluorescence lifetime experiment, and (1)H NMR titration. The addition of Ni(2+) to a solution of L (DMSO:water = 1:1, v/v; λ(em) = 345 nm, λ(ex) = 280 nm) quenched its monomer emission, with subsequent enhancement of the excimer intensity (at 430 nm) with an isoemissive point at 381 nm. The fluorescence lifetime of free L (0.3912 ns) is much lower than that of the nickel(2+) complex (1.1329 ns). L could detect Ni(2+) as low as 1 × 10(-6) M with a fairly strong binding constant, 2.0 × 10(4) M(-1). Ni(2+)-contaminated living cells of plant origin could be imaged using a fluorescence microscope.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号