首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2020年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
2.

Rising fuel costs and efforts for reducing greenhouse gases have led researchers to propose optimized models of combustion which have high efficiency and low emissions. Reactivity controlled compression ignition (RCCI) engines are attractive due to their high efficiency and low NOx and soot emissions over a wide range of operating conditions. In this study, methane and n-heptane are used as low and high reactive fuels, respectively, to create suitable fuel stratification within the cylinder. Modeling is carried out by AVL FIRE coupled with a chemical kinetics solver to investigate the effects of fuel ratio, initial temperature and equivalence ratio on the combustion performance and emission characteristics. Methane/n-heptane ratios are varied according to the energy ratio of each fuel while total input energy and total equivalence ratios are fixed. By increasing methane energy ratio from 65% to 85% in the constant intake temperature and pressure, the mixture Octane number increases, which would lead to an increase in ignition delay up to 5 crank angles. As a result, IMEP would be enhanced and also NOx emission decreases because of lower combustion temperature. By increasing intake temperature, the maximum in-cylinder pressure, heat release rate and NOx emission would increase significantly while soot emission decreases, and also ringing intensity increases up to 10%. On the other hand, increasing intake temperature reduces volumetric efficiency; as a result, IMEP is reduced by 11%. Also by increasing equivalence ratio from 0.35 to 0.55 in a constant energy ratio, noticeable growth in the maximum amount of pressure and temperature could be achieved; consequently, NOx emission would increase significantly, IMEP increases by 43%, and ISFC decreases by 30%. The results indicate that these parameters have significant effects on the heavy-duty RCCI engine performance and emissions.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号