首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   17篇
  国内免费   18篇
化学   130篇
力学   15篇
综合类   1篇
数学   33篇
物理学   71篇
  2023年   6篇
  2022年   4篇
  2021年   5篇
  2020年   16篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   10篇
  2013年   14篇
  2012年   10篇
  2011年   13篇
  2010年   9篇
  2009年   18篇
  2008年   11篇
  2007年   13篇
  2006年   19篇
  2005年   15篇
  2004年   13篇
  2003年   7篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有250条查询结果,搜索用时 987 毫秒
1.
V02-based thin film materials on silicon substrates are fabricated by ion beam sputtering and a post-annealing which is different from the conventional fabricating method. An infrared linear microbolometer array with 128 pixels is prepared using as-deposited vanadium dioxide thin films. Optical and electrical properties for V02-based microbolometer array are tested.  相似文献   
2.
Gaseous reactant involved heterogeneous catalysis is critical to the development of clean energy, environmental management, health monitoring, and chemical synthesis. However, in traditional heterogeneous catalysis with liquid–solid diphase reaction interfaces, the low solubility and slow transport of gaseous reactants strongly restrict the reaction efficiency. In this minireview, we summarize recent advances in tackling these drawbacks by designing catalytic systems with an air–liquid–solid triphase joint interface. At the triphase interface, abundant gaseous reactants can directly transport from the air phase to the reaction centre to overcome the limitations of low solubility and slow transport of the dissolved gas in liquid–solid diphase reaction systems. By constructing a triphase interface, the efficiency and/or selectivity of photocatalytic reactions, enzymatic reactions, and (photo)electrochemical reactions with consumption of gaseous reactants oxygen, carbon dioxide, and nitrogen are significantly improved.

Gaseous reactant involved liquid–solid diphase interface reactions can be significantly enhanced using rationally designed and constructed air–liquid–solid triphase systems.  相似文献   
3.
In this work, the enzymatic degradation of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters was studied using the lipase from Pseudomonas (Lipase PS®). The biodegradation behavior was found to strongly depend on the overall impacts of several important factors as the BT comonomer structure and molar content, thermal characteristics, morphology, the enzyme-substrate, and so forth. Further, the biodegraded residual film samples were allowed to be analyzed by means of gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), differential scanning calorimeter (DSC), small angle X-ray scattering (SAXS), and scanning electron microscope (SEM). On the experimental evidences, an exo-type mechanism of enzymatic chain hydrolysis preferentially occurring in the amorphous region was suggested for the PBST film samples.  相似文献   
4.
In this study, we investigated redox thermodynamics of myoglobin as well as the ionic (phosphate ions) and ligation (imidazole) effects via a dynamic electrochemical approach. We employed a previously established system that features nonmediated, direct electrochemistry of myoglobin and myoglobin in an immobilized state (i.e., diffusionless electrochemistry). Thermodynamics parameters were obtained by measuring redox potential (E degrees ') of myoglobin at varied temperature (T), in the presence and in the absence of specific ions or axial ligands. As a step further, we evaluated contributions from allosteric effect and axial iron ligation by partitioning E degrees ' changes into entropic and enthalpic terms. Compensation phenomena between the entropic and enthalpic changes were observed in all these cases. On the basis of these studies, we also correlated these phenomena to possible structural variations.  相似文献   
5.
The self-assembly behaviors of a series of zwitterionic heterogemini surfactants CmH2m+1-PO4–(CH2)2-N+(CH3)2-CnH2n+1, abbreviated as Cm-P-N-Cn (m, n?=?9, 9; 9, 12; 9, 15; 9, 18; 12, 12; 12, 15; 12, 18; 15, 15; 15, 18; 18, 18), have been investigated in aqueous solution by the dissipative particle dynamics (DPD) method. Morphologies such as sphere (S), rod (R), planar grid (PG), lamella (L), honeycomb (H), one-, two-, and three-dimensional tunnels (1DT, 2DT, and 3DT) have been observed showing more diversities than those of the corresponding symmetric gemini surfactants Cm-N-N-Cm (m?=?9, 12, 15, 18). With the increase of surfactant concentration in the aqueous solution, a distinct transition path ‘‘S—R—PG—3DT—L—2DT—1DT’’ is proved to be common for all the Cm-P-N-Cn systems. Besides, the hydrophobic chain length has a significant influence on the self-assembly behaviors in the case of m?≠?n. Radial distribution function is an effective method to quantitatively evaluate the interaction and relationship between each functional group in the surfactant molecule and water. Results can provide a new insight into the self-assembly behaviors of zwitterionic heterogemini surfactants and the corresponding applications.  相似文献   
6.
A multifunctional system for intracellular drug delivery and simultaneous fluorescent imaging was constructed by using histidine‐tagged, cyan fluorescent protein (CFP)‐capped magnetic mesoporous silica nanoparticles (MMSNs). This protein‐capped multifunctional nanostructure is highly biocompatible and does not affect cell viability or proliferation. The CFP acts not only as a capping agent, but also as a fluorescent imaging agent. The nanoassembly was activated by histidine‐based replacement, leading to release of drug molecules encapsulated in the nanopores into the bulk solution. The fluorescent imaging functionality would allow noninvasive tracking of the nanoparticles in the body. By combining the drug delivery with cell‐imaging capability, these nanoparticles may provide valuable multifunctional nanoplatforms for biomedical applications.  相似文献   
7.
Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near‐infrared (NIR)‐regulated hydrophobic drug‐delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin‐loaded AuMP‐polyethylene glycol‐folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote‐controlled hydrophobic drug‐delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR‐controlled, targeted drug‐delivery method would promote the development of high‐performance hydrophobic anticancer drug‐delivery system in future clinical applications.  相似文献   
8.
A novel CuI/l-proline catalyzed coupling reaction of 1-Boc-3-iodoazetidine with various arylboronic acids which produced aryloxyazetidine derivatives in moderate to good yields was investigated.  相似文献   
9.
An efficient bio‐safe cyclophosphazene flame retardant, 1,5,9,13,16,20‐Hexaoxa‐7,14,21‐triaza‐6λ4,8λ4,5λ4‐triphosphatrispiro[5.1.5.1.5.1]heneicosa‐6,8(14),15(21)‐triene (HCPO), was synthesized, and then was incorporated into polylactic acid (PLA) to improve the fire safety. The chemical structure of HCPO was confirmed by Fourier‐transformed infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The thermal stability of the compound was characterized by thermogravimetric (TG) analyzer. The cytotoxic effects of HCPO to cells were evaluated. Fire behavior and thermal stability of PLA composites were investigated by vertical burning, limiting oxygen index (LOI), TG analysis, and cone calorimeter. The morphology of residual charring was observed by scanning electron microscope. The results showed HCPO was bio‐safe, and highly effective to enhance the flame retardancy of PLA composites. The LOI value was increased from 18.4 to 27.5 and UL‐94 grade achieved V‐0 for the PLA composite containing only 2% HCPO and 2% pentaerythrotol. It was demonstrated that intermolecular cross‐linking reaction between pentaerythrotol and HCPO in high temperature range could accelerate the formation of compact char layers.  相似文献   
10.
界面微环境是影响酶催化反应及酶传感性能的关键因素. 本研究基于三维微纳米结构多孔金基底, 通过调控电极表面的亲水和疏水浸润性, 制备了具有固-液-气三相界面微环境的氧化酶电极, 并研究了界面微环境对酶催化反应动力学的影响规律. 基于所制备的三相界面多孔金结构酶电极, 反应物氧气能够从气相直接快速地传输到酶催化反应界面, 极大地提升了界面氧气浓度及其稳定性, 从而大幅度提高了氧化酶活性及酶电极响应的稳定性. 以葡萄糖为模型待测物, 基于该三相界面酶电极的电化学酶生物传感器拥有宽的线性范围、 高的灵敏度、 低的检出限以及良好的稳定性. 这类独特的三相反应界面设计为高效酶生物传感器的建构以及生物分子的精准检测提供了新思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号