首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
物理学   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Applications of membrane technologies for potable water production have been expanding significantly, leading to increased efforts to control membrane fouling, which can significantly reduce membrane performance, increase operating costs, and shorten membrane life. Natural organic matter is ubiquitous in all water supplies and has been implicated as a major contributor to fouling during filtration of natural water. In this review, we discuss factors that influence NOM fouling, including hydrodynamics; properties of the feed constituents such as size, hydrophobicity, charge density and isoelectric point; properties of the membrane including hydrophobicity, charge density, surface roughness, and porosity; and properties of the solution phase such as pH, ionic strength and concentration of metals. We review approaches to identify and mathematically describe fouling kinetics, including effects of pore blockage, cake formation, and osmotic pressure. Finally, we discuss strategies to mitigate fouling, with a focus on strategies that involve a modification of the nanostructure of membrane surfaces, via UV-assisted graft polymerization of hydrophilic monomers to increase surface wettability and reduce interactions between NOM and the membrane surface.  相似文献   
2.
A combined osmotic pressure and cake filtration model for crossflow nanofiltration of natural organic matter (NOM) was developed and successfully used to determine model parameters (i.e. permeability reduction factor (η) and specific cake resistance (αcake)) for salt concentrations, NOM concentrations, and ionic strength of salt species (Na+ and Ca++). In the absence of NOM, with increasing salt concentration from 0.004 to 0.1 M, permeability reduction factor (η)) decreased from 0.99 to 0.72 and 0.94 to 0.44 for monovalent cation (Na+) and divalent cation (Ca++), respectively. This reduced membrane permeability was due to salt concentrations and salt species. In the presence of NOM, specific cake resistance tended to increase with increasing NOM concentration and ionic strength in the range of 0.85 × 1015–3.66 × 1015 m kg−1. Solutions containing divalent cation exhibited higher normalized flux decline (Jv/Jvo = 0.685–0.632) and specific cake resistance (αcake = 2.89 × 1015–6.24 × 1015 m kg−1) than those containing monovalent cation, indicating a highly compacted NOM accumulation, thus increased permeate flow resistance during NF filtration experiments. After membrane cleaning, divalent cation exhibited lower water flux recovery than monovalent cation, suggesting higher non-recoverable (Rnon-rec) resistance than monovalent cation.  相似文献   
3.
The influence of inorganic scalants and NOM on nanofiltration (NF) membrane fouling was investigated by a crossflow bench-scale test cell. Mathematical fouling models were used to determine kinetics and fouling mechanisms of NF membrane. It was observed that, with natural organic matter (NOM) at a concentration of 10 mg L−1, divalent cation, i.e. calcium (Ca2+), exhibited greater flux decline than monovalent cation, i.e. sodium (Na+), while solution flux curves dominated cake formation model, especially at high ionic strength. For inorganic scalants of polyanions, i.e. carbonate (CO32−), sulphate (SO42−), and phosphate (PO43−), solution flux curves were relatively fitted well with pore blocking model, possibly due to precipitated species formed and blocked on membrane surface and/or pores. For different divalent cations (i.e. calcium and magnesium (Mg2+)), calcium showed greater flux decline than magnesium, possibly due to higher concentration of precipitated calcium species than that of precipitated magnesium species based on the pC (−log concentration) and pH diagram.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号