首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
化学   18篇
物理学   48篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
排序方式: 共有66条查询结果,搜索用时 250 毫秒
1.
Alp  E. E.  Sturhahn  W.  Toellner  T. S.  Zhao  J.  Hu  M.  Brown  D. E. 《Hyperfine Interactions》2002,144(1-4):3-20
Nuclear resonant inelastic X-ray scattering of synchrotron radiation is being applied to ever widening areas ranging from geophysics to biophysics and materials science. Since its first demonstration in 1995 using the 57Fe resonance, the technique has now been applied to materials containing 83Kr, 151Eu, 119Sn, and 161Dy isotopes. The energy resolution has been reduced to under a millielectronvolt. This, in turn, has enabled new types of measurements like Debye velocity of sound, as well as the study of origins of non-Debye behavior in presence of other low-energy excitations. The effect of atomic disorder on phonon density of states has been studied in detail. The flux increase due to the improved X-ray sources, crystal monochromators, and time-resolved detectors has been exploited for reducing sample sizes to nano-gram levels, or using samples with dilute resonant nuclei like myoglobin, or even monolayers. Incorporation of micro-focusing optics to the existing experimental setup enables experiments under high pressure using diamond-anvil cells. In this article, we will review these developments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Amorphous (a-) Fe x Mg1?x alloys are interesting materials for the investigation of non-Debye-like low-energy vibrational excitations. We have prepared a-Fe x Mg1?x alloy thin films (0.3 ≤ × ≤0.7) by vapour quenching. The amorphous state was confirmed by conversion electron Mössbauer spectroscopy between 4.2–300 K, and the x- and temperature-dependence of the isomer shift and hyperfine magnetic field was measured. For x= 0.6 and 0.7, magnetic ordering occurs below ~150 K. The atomic vibrational density of states, g(E), was determined by nuclear resonant inelastic scattering, providing clear evidence for the non-Debye-like low-energy vibrational excitations.  相似文献   
3.
A new time integrated method for the study of resonant nuclear scattering of synchrotron radiation in the forward direction or in Bragg directions is introduced. This method gives in principle similar information as the well known time differential method. A brief comparison of both methods is presented. The idea is to excite coherently the nuclei incorporated in two absorbers, one moving with respect to the other. The fields radiated by the nuclei from both absorbers interfere and each time the nuclear energy in one absorber matches, by Doppler modulation, the nuclear energy of the other, an extremum in the time integrated intensity is observed. The results of the first experiments at the Advanced Photon Source at the Argonne National Laboratory will be presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
With the decrease in size of devices, rapid characterization of nano-devices is an inevitable necessity. It is shown that Mössbauer spectroscopy using synchrotron radiation from the advanced photon source provides such a tool of investigation. Results are presented and compared for conventional Mössbauer and Nuclear Forward Scattering for 151Eu-doped magnesium sulfide as an example, especially at low concentrations.  相似文献   
5.
6.
7.
Detailed Fe vibrational spectra have been obtained for the heme model complex [Fe(TPP)(CO)(1-MeIm)] using a new, highly selective and quantitative technique, Nuclear Resonance Vibrational Spectroscopy (NRVS). This spectroscopy measures the complete vibrational density of states for iron atoms, from which normal modes can be calculated via refinement of the force constants. These data and mode assignments can reveal previously undetected vibrations and are useful for validating predictions based on optical spectroscopies and density functional theory, for example. Vibrational modes of the iron porphyrin-imidazole compound [Fe(TPP)(CO)(1-MeIm)] have been determined by refining normal mode calculations to NRVS data obtained at an X-ray synchrotron source. Iron dynamics of this compound, which serves as a useful model for the active site in the six-coordinate heme protein, carbonmonoxy-myoglobin, are discussed in relation to recently determined dynamics of a five-coordinate deoxy-myoglobin model, [Fe(TPP)(2-MeHIm)]. For the first time in a six-coordinate heme system, the iron-imidazole stretch mode has been observed, at 226 cm(-)(1). The heme in-plane modes with large contributions from the nu(42), nu(49), nu(50), and nu(53) modes of the core porphyrin are identified. In general, the iron modes can be attributed to coupling with the porphyrin core, the CO ligand, the imidazole ring, and/or the phenyl rings. Other significant findings are the observation that the porphyrin ring peripheral substituents are strongly coupled to the iron doming mode and that the Fe-C-O tilting and bending modes are related by a negative interaction force constant.  相似文献   
8.
We report the partial phonon densities of states (DOS) of iron sulfide, a possible component of the rocky planet's core, measured by the 57Fe nuclear resonant inelastic x-ray scattering and calculate the total phonon DOS under pressure. From the phonon DOS, we drive thermodynamic parameters. A comparison of the observed and estimated compressibilities makes it clear that there is a large pure electronic contribution in the observed compressibility in the metallic state. Our results present the observation of thermodynamic parameters of iron sulfide with the low-spin state of an Fe2+ ion at the high density, which is similar to the condition of the Martian core.  相似文献   
9.
The principal and engineering aspects of a dedicated synchrotron radiation beamline under construction at the Advanced Photon Source for nuclear resonant scattering purposes are explained. The expected performance in terms of isotopes to be studied, flux, and timing properties is discussed.This work is supported by the US-DOE-BES Materials Sciences, under Contract No. W-31-109-ENG-38.  相似文献   
10.
Ruckert  T.  Keune  W.  Sahoo  B.  Sturhahn  W.  Toellner  T. S.  Alp  E. E.  Röhlsberger  R. 《Hyperfine Interactions》2002,144(1-4):65-76
Hyperfine Interactions - Nuclear resonant inelastic X-ray scattering (NRIXS) of 14.4125 keV synchrotron radiation was used to measure directly the partial vibrational density of states (VDOS),...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号