首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   5篇
物理学   5篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2000年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有10条查询结果,搜索用时 625 毫秒
1
1.
Muon spin relaxation measurements in high transverse magnetic fields [FORMULA: SEE TEXT] revealed strong field-induced quasistatic magnetism in the underdoped and Eu-doped (La,Sr)2CuO4 and La1.875Ba0.125CuO4, existing well above Tc and TN. The susceptibility counterpart of Cu spin polarization, derived from the muon spin relaxation rate, exhibits a divergent behavior towards T approximately 25 K. No field-induced magnetism was detected in overdoped La1.81Sr0.19CuO4, optimally doped Bi2212, and Zn-doped YBa2Cu3O7.  相似文献   
2.

Background  

Spt7 is an integral component of the multi-subunit SAGA complex that is required for the expression of ~10% of yeast genes. Two forms of Spt7 have been identified, the second of which is truncated at its C-terminus and found in the SAGA-like (SLIK) complex.  相似文献   
3.
It has been proposed that the construction of a photosensitizer-polymer conjugate would lead to an increased selective retention of the drug in tumor tissue resulting in an enhancement of selective tumor destruction by light in photodynamic therapy. In this study the kinetics of a tetra-pegylated derivative of meta-tetra(hydroxyphenyl)chlorin (mTHPC-PEG) were compared with those of native meta-tetra(hydroxyphenyl)chlorin (mTHPC) in a rat liver tumor model. In addition, the time course of bioactivity of both drugs was studied in normal liver tissue. Pegylation of mTHPC resulted in a two-fold increase in the plasma half-life time, a five-fold decrease in liver uptake and an increase in the tumor selectivity at early time intervals after drug administration. However, although mTHPC concentrations in liver decrease rapidly with time, mTHPC-PEG liver concentrations increased as a function of time. This led to a loss of tumor selectivity at all but the earliest time points, whereas with mTHPC tumor selectivity increased with time. For both drugs the time course of bioactivity in the liver parallels drug concentration levels with extensive necrosis after irradiation of mTHPC-PEG-sensitized liver tissue up to drug-light intervals of 120 h. It is concluded that on balance mTHPC-PEG does not appear to show any benefits over native mTHPC for the treatment of liver tumors, as normal liver tissue accumulates the compound. However, pegylation is a potentially promising strategy with an increase in tumor selectivity and reduced liver uptake if accumulation in the liver can be prevented.  相似文献   
4.
5.
6.
7.
This paper describes the photodynamic characteristics of the new near-infrared photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (mTHPBC or SQN400) in normal rat and mouse tissues. A rat liver model of photodynamic tissue necrosis was used to determine the in vivo action spectrum and the dose-response relationships of tissue destruction with drug and light doses. The effect of varying the light irradiance and the time interval between drug administration and light irradiation on the biological response was also measured in the rat liver model. Photobleaching of mTHPBC was measured and compared with that of its chlorine analog (mTHPC) in normal mouse skin and an implanted mouse colorectal tumor. The optimum wavelength for biological activation of mTHPBC in rat liver was 739 nm. mTHPBC was found to have a marked drug-dose threshold of around 0.6 mg kg-1 when liver tissue was irradiated 48 h after drug administration. Below this administered drug dose, irradiation, even at very high light doses, did not cause liver necrosis. At administered doses above the photodynamic threshold the effect of mTHPBC-PDT was directly proportional to the product of the drug and light doses. No difference in the extent of liver necrosis produced by mTHPBC was found on varying the light irradiance from 10 to 100 mW cm-2. The extent of liver necrosis was greatest when tissue was irradiated shortly after mTHPBC administration and necrosis was absent when irradiation was performed 72 h or later after drug administration, suggesting that the drug was rapidly cleared from the liver. In vivo photobleaching experiments in mice showed that the rate of bleaching of mTHPBC was approximately 20 times greater than that of mTHPC. It is argued that this greater rate of bleaching accounts for the higher photodynamic threshold and this could be exploited to enhance selective destruction of tissues which accumulate the photosensitizer.  相似文献   
8.
9.
Muon spin relaxation and magnetic susceptibility measurements have been performed on the pure and diluted spin 1/2 kagomé system (CuxZn(1-x))3V2O7(OH)2 2H2O. In the pure x=1 system we found a slowing down of Cu spin fluctuations with decreasing temperature towards T approximately 1 K, followed by slow and nearly temperature-independent spin fluctuations persisting down to T=50 mK, indicative of quantum fluctuations. No indication of static spin freezing was detected in either of the pure (x=1.0) or diluted samples. The observed magnitude of fluctuating fields indicates that the slow spin fluctuations represent an intrinsic property of kagomé network rather than impurity spins.  相似文献   
10.
We have investigated tumor immunological effects of photodynamic therapy (PDT) of liver metastases. Livers of Wag/Rij rats were inoculated with three tumors of a syngeneic rat colon carcinoma cell line, CC531. One tumor in each rat was illuminated, with or without previous administration of the photosensitizer metatetrahydroxyphenylchlorin (mTHPC). PDT was effective in causing necrosis of tumors, but it did not affect the growth rate of nearby, nonilluminated tumors in the liver. Immunological staining of tumors showed natural killer (NK) cells to be significantly lower in PDT-treated tumors than in control tumors (P < 0.05). T cells in PDT-treated tumors and in their margins were lower than in tumors that received only sensitizer or only illumination (P = 0.015) at day 2 after treatment but reappeared at the tumor margins from day 7 after treatment. For macrophages, a similar pattern was found. NK cells, T cells or macrophages in nonilluminated tumors in mTHPC-treated rats did not increase significantly when compared with tumors in rats without mTHPC treatment. These findings indicated that no antitumor effect of a systemic immune response was present, as measured by the effect of PDT on growth of distant tumors and the number of T lymphocytes, NK cells and macrophages in these tumors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号