首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
化学   1篇
数学   5篇
物理学   21篇
  2015年   1篇
  2010年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1974年   1篇
排序方式: 共有27条查询结果,搜索用时 312 毫秒
1.
2.
Low-temperature heat transport was used to investigate the ground state of high-purity single crystals of the lightly doped cuprate YBa2Cu3O6.33. Samples were measured with doping concentrations on either side of the superconducting phase boundary. We report the observation of delocalized fermionic excitations at zero energy in the nonsuperconducting state, which shows that the ground state of underdoped cuprates is a thermal metal. Its low-energy spectrum appears to be similar to that of the d-wave superconductor, i.e., nodal. The insulating ground state observed in underdoped La2-xSrxCuO4 is attributed to the competing spin-density-wave order.  相似文献   
3.
Thermal conductivity and specific heat were measured in the superconducting state of the heavy-fermion material Ce(1-x)La(x)CoIn5. With increasing impurity concentration x, the suppression of T(c) is accompanied by the increase in residual electronic specific heat expected of a d-wave superconductor, but it occurs in parallel with a decrease in residual electronic thermal conductivity. This contrasting behavior reveals the presence of uncondensed electrons coexisting with nodal quasiparticles. An extreme multiband scenario is proposed, with a d-wave superconducting gap on the heavy-electron sheets of the Fermi surface and a negligible gap on the light, three-dimensional pockets.  相似文献   
4.
The transport of heat and charge in cuprates was measured in single crystals of La(2-x)Sr(x)CuO(4+delta) (LSCO) across the doping phase diagram at low temperatures. In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T-->0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. In heavily underdoped LSCO, where superconductivity can be entirely suppressed with an applied magnetic field, we show that a novel thermal metal-to-insulator transition takes place upon going from the superconducting state to the field-induced normal state.  相似文献   
5.
The effect of simultaneous substitution of a fluctuating cation and a divalent cation in LaMnO3 perovskite modifies the properties of the material to exhibit large valence colossal magnetoresistance (CMR) effect. A good example of these properties is (La1−2x Pr x Ca x )MnO3 (LPCMO) type CMR material. In this communication it is reported that, with the increase in x (for x=0.1, 0.15, 0.2), the T c varies between 100 and 120 K with improvisation in metal-insulator transition. Interestingly, resistance increases with x from few hundred ohms to few kilo ohms with corresponding decrease in the unit cell volume. The results of the studies using X-ray diffraction (XRD), electrical resistivity, magnetoresistance and ac susceptibility measurements on LPCMO samples for understanding the structural, transport and magnetic properties are discussed in detail.  相似文献   
6.
The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a function of temperature, down to 25 mK and in magnetic fields of up to 16 T applied perpendicular to the basal plane. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho approximately T, and the development of a Fermi liquid state, with its characteristic rho=rho(0)+AT2 dependence. The field dependence of the T2 coefficient shows critical behavior with an exponent of 1.37. This is evidence for a field-induced quantum critical point (QCP), occurring at a critical field which coincides, within experimental accuracy, with the superconducting critical field H(c2). We discuss the relation of this field-tuned QCP to a change in the magnetic state, seen as a change in magnetoresistance from positive to negative, at a crossover line that has a common border with the superconducting region below approximately 1 K.  相似文献   
7.
The thermal conductivity kappa of the layered s-wave superconductor NbSe2 was measured down to T(c)/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H(c1) and one with highly delocalized quasiparticle excitations at higher fields. The two associated length scales are naturally explained as multiband superconductivity, with distinct small and large superconducting gaps on different sheets of the Fermi surface. This behavior is compared to that of the multiband superconductor MgB2 and the conventional superconductor V3Si.  相似文献   
8.
Heat and charge conduction were measured in the heavy-fermion metal CeRhIn(5), an antiferromagnet with T(N)=3.8 K. The thermal resistivity is found to be proportional to the magnetic entropy, revealing that spin fluctuations are as effective in scattering electrons as they are in disordering local moments. The electrical resistivity, governed by a q(2) weighting of fluctuations, increases monotonically with temperature. In contrast, the difference between thermal and electrical resistivities, characterized by a omega(2) weighting, peaks sharply at T(N) and eventually goes to zero at a temperature T(*) approximately = 8 K. T(*) thus emerges as a measure of the characteristic energy of magnetic fluctuations.  相似文献   
9.
10.
    
Ohne Zusammenfassung  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号