首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  国内免费   4篇
化学   33篇
力学   6篇
数学   5篇
物理学   14篇
  2023年   2篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1970年   1篇
排序方式: 共有58条查询结果,搜索用时 155 毫秒
1.
2.
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   
3.
4.
5.
Urban rail planning is extremely complex, mainly because it is a decision problem under different uncertainties. In practice, travel demand is generally uncertain, and therefore, the timetabling decisions must be based on accurate estimation. This research addresses the optimization of train timetable at public transit terminals of an urban rail in a stochastic setting. To cope with stochastic fluctuation of arrival rates, a two‐stage stochastic programming model is developed. The objective is to construct a daily train schedule that minimizes the expected waiting time of passengers. Due to the high computational cost of evaluating the expected value objective, the sample average approximation method is applied. The method provided statistical estimations of the optimality gap as well as lower and upper bounds and the associated confidence intervals. Numerical experiments are performed to evaluate the performance of the proposed model and the solution method.  相似文献   
6.
A well‐known result on pathwise uniqueness of the solution of stochastic differential equations in is the Yamada‐Watanabe theorem. We have extended this result by replacing the Lipschitz assumption on the drift coefficient by much weaker assumption of semi‐monotonicity.  相似文献   
7.
For the first time iridium oxide (IrO2) nanotubes are synthesized by electrodeposition in a polycarbonate (PC) template. Potential cycling (90 cycles) between 0.0 and 0.9 V is used for the preparation of IrOx nanotubes onto the PC template with a pore diameter of 100 nm. Field‐emission scanning electron microscopy (FESEM) images show, that IrO2 nanotubes with uniform diameters of 110±10 nm and an estimated length of 1–3 µm are formed. The electrochemical properties and the electrocatalytic activity of a glassy carbon‐IrOx nanotube modified electrode toward Cr3+ and As3+ oxidation are investigated. Finally, the modified electrode is used for micromolar detection of the proposed analytes using differential pulse voltammetry.  相似文献   
8.
9.
Theoretically, Ultrasound method is an economical and environmentally friendly or “green” technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille’s equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound.  相似文献   
10.
A microfluidic platform is developed for the synthesis of monodisperse, 100 nm, chitosan based nanoparticles using nanogelation with ATP. The resulting nanoparticles tuned and enhanced transport and electrochemical properties of Nafion based nanocomposite membranes, which is highly favorable for fuel cell applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号