首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
物理学   10篇
  2008年   2篇
  2006年   3篇
  2005年   2篇
  1996年   2篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
We demonstrate propagation of 14 nJ femtosecond pulses through a large-mode-area, higher-order-mode (HOM) fiber with an effective area of 2100 microm2. The pulses propagate stably in the LP07 mode of the fiber through lengths as long as 12 m. The strongly chirped pulses exiting the amplifier fiber are dechirped by the high-order-mode fiber, resulting in pulses with a peak power of 61 kW after propagation in 5 m of the positive-dispersion fiber. A small amount of self-phase modulation is observed in the compressed pulses and is described well by a nonlinear Schr?dinger equation model that takes into account the measured effective area and dispersion of the HOM fiber.  相似文献   
4.
Femtosecond fiber lasers together with nonlinear fibers are compact, reliable, all-fiber supercontinuum sources. Maintaining an all-fiber configuration, however, necessitates pulse compression in an optical fiber, which can lead to nonlinearities for subhundred femtosecond, nanojoule pulses. In this work we show that using large-mode-area fibers for pulse compression mitigates the nonlinearity, resulting in compressed pulses with significantly reduced satellite pulses. Consequently, supercontinua generated with these pulses are shown to have as much as a 10 dB increase in coherence fringe contrast. By using a hybrid highly nonlinear fiber-photonic crystal fiber, the continuum can be extended to visible wavelengths while still maintaining high coherence.  相似文献   
5.
Delivery of high peak-power femtosecond pulses with fibers is constrained by nonlinear distortions accumulated during pulse propagation. We address this problem with a novel, to our knowledge, fiber schematic, where the pulse propagates in a small Aeff (18 microm2) but highly dispersive (record value of approximately -900 ps/nm km) medium, enabled by transmission in the LP02 mode of a few-mode fiber. The novel fiber yields a low dispersion-to-nonlinear-length ratio (due to its large dispersion) despite its small Aeff, hence enabling mitigation of nonlinearities. This enables fiber delivery of distortion-free <150 fs, approximately 1 nJ, and 840 nm pulses--an order-of-magnitude improvement over single-mode fibers of similar Aeff.  相似文献   
6.
Light propagation with ultralarge modal areas in optical fibers   总被引:3,自引:0,他引:3  
We demonstrate robust single-transverse-mode light propagation in higher-order modes of a fiber, with effective area A(eff) ranging from 2,100 to 3,200 microm(2). These modes are accessed using long-period fiber gratings that enable higher-order-mode excitation over a bandwidth of 94 mm with greater than 99% of the light in the desired mode. The fiber is designed such that the effective index separation between modes is always large, hence minimizing in-fiber mode mixing and enabling light propagation over lengths as large as 12 m, with bends down to 4.5 cm radii. The modal stability increases with mode order, suggesting that A(eff) of this platform is substantially scalable.  相似文献   
7.
We demonstrate an all-solid (nonholey), silica-based fiber with anomalous dispersion at wavelengths where silica material dispersion is negative. This is achieved by exploiting the enhanced dispersion engineering capabilities of higher-order modes in a fiber, yielding + 60 ps/nm km dispersion at 1080 nm. By coupling to the desired higher-order mode with low-loss in-fiber gratings, we realize a 5 m long fiber module with a 300 fs/nm dispersion that yields a 1 dB bandwidth of 51 nm with an insertion loss of approximately 0.1 dB at the center wavelength of 1080 nm. We demonstrate its functionality as a critical enabler for an all-fiber, Yb-based, mode-locked femtosecond ring laser.  相似文献   
8.
9.
Supercontinuum extending to visible wavelengths is generated in a hybrid silica nonlinear fiber pumped at 1560 nm by a femtosecond, erbium-doped fiber laser. The hybrid nonlinear fiber consists of a short length of highly nonlinear, germano-silicate fiber (HNLF) spliced to a length of photonic crystal fiber (PCF). A 2 cm length of HNLF provides an initial stage of continuum generation due to higher-order soliton compression and dispersive wave generation before launching into the PCF. The visible radiation is generated in the fundamental mode of the PCF.  相似文献   
10.
Polarization dependence in microbend gratings is an inherent problem, even in perfectly circular fibers, since antisymmetric modes are almost degenerate linear combinations of four distinct, polarization-sensitive modes. We demonstrate a novel fiber design that lifts polarization degeneracies of the antisymmetric modes to solve this problem. By intentionally exacerbating the polarization splittings, we achieve coupling to only the polarization-insensitive doublet, over wavelength ranges exceeding 100 nm, thus demonstrating a device with practical usable bandwidths. This allows all previous applications envisaged with UV-induced long-period gratings to be realized with the significantly lower-cost microbend technology platform.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号