首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segmented cladding fiber (SCF) is capable of single mode operation over an extended range of wavelengths while maintaining large mode area. In this paper we report the design of an SCF with mode area as large as 1,825  $\upmu \hbox {m}^{2}$ , suitable for delivery of high peak power femtosecond laser pulses at 1550 and 1064 nm wavelengths. An SCF with such a large-mode area is a few-moded fiber and its design requires careful choice of design parameters to have robustness against mode-coupling effects and bend loss. In this paper we address these issues and report a design of an SCF showing near distortion-free propagation of 100-fs, 53-kW peak power pulses at 1550-nm wavelength with 1,825- $\upmu \hbox {m}^{2}$ mode area through fundamental mode. The same fiber can also deliver 250-fs, 15-kW peak power pulses at 1064-nm wavelength with 1,793- $\upmu \hbox {m}^{2}$ mode area. The fiber has been analyzed by using the radial effective-index method in conjunction with transfer matrix method and the pulse propagation has been studied by solving the nonlinear Schroedinger equation by split-step Fourier method. Such a fiber would find applications in multiphoton microscopy and in biomedical engineering.  相似文献   

2.
The characterization of medium- to low-energy shaped pulses at 1.55 7m through frequency-resolved optical gating (FROG) is illustrated. This capability enables the study of ultrafast pulse propagation through optical fibers. The phase dynamics detected furnishes insight on pulse evolution, specifically on soliton formation - a subject of great importance for telecommunication applications. The combination of shaping and propagation of ultrafast pulses in fibers is examined theoretically using an adaptive pulse-shaping model, based on genetic algorithms, that furnishes optimized pulse shapes for fiber propagation.  相似文献   

3.
We report the testing of a high gradient electron accelerator with a photonic-band-gap (PBG) structure. The photonic-band-gap structure confines a fundamental TM(01)-like accelerating mode, but does not support higher-order modes (HOM). The absence of HOM is a major advantage of the PBG accelerator, since it suppresses dangerous beam instabilities caused by wakefields. The PBG structure was designed as a triangular lattice of metal rods with a missing central rod forming a defect confining the TM(01)-like mode and allowing the electron beam to propagate along the axis. The design frequency of the six-cell structure was 17.14 GHz. The PBG structure was excited by 2 MW, 100 ns pulses. A 16.5 MeV electron beam was transmitted through the PBG accelerator. The observed electron beam energy gain of 1.4 MeV corresponds to an accelerating gradient of 35 MV/m, in excellent agreement with theory.  相似文献   

4.
This paper describes the physics and properties of a novel optical fiber that would be attractive for building high‐power fiber lasers and amplifiers. Instead of propagating light in the fundamental, Gaussian‐shaped mode, we describe a fiber in which the signal is forced to travel in a single, desired higher order mode (HOM). This provides for several advantages over the conventional approach, ranging from significantly higher ability to scale mode areas (and hence laser powers) to managing dispersion for ultra‐short pulses – a capability that is practically nonexistent in conventional fibers. Particularly interesting is the fact that this approach challenges conventional wisdom, and demonstrates that for applications requiring meter‐length fibers (as in high‐power lasers), signal stability actually increases with mode order. Using this approach, we demonstrate mode areas exceeding 3200 μm2, and propagate signals with negligible mode distortions over up to 50‐meter lengths. We describe several pulse propagation experiments in which we test the nonlinear response of this fiber platform, ranging from managing dispersive effects in femtosecond pulse systems, to reducing Brillouin scattering impairments in systems operating with the nanosecond pulses.  相似文献   

5.
A parabolic index dispersion decreasing fiber (DDF) has been designed and optimized to produce high capacity soliton communication system. Variation of different fiber parameters such as core radius, effective core area and GVD factor along the 25 km of DDF length has been carried out to optimize a best possible DDF which can sustain the propagation of fundamental soliton. The variation of non-linearity with length along with the conventional power and GVD factor variation has been included in the generalized non-linear Schrodinger equation (NLSE). This NLSE has been solved numerically by split step Fourier method for shorter pulse propagation, incorporating the term for third order dispersion and intrapulse Raman scattering. Stable soliton pulses in transmission system have been achieved by our simulation, when a correction factor due to Raman induced soliton mean frequency shift is incorporated to the GVD profile predicted by the fundamental soliton condition. The interaction of neighboring soliton pulse pair through the proposed fiber has also been studied.  相似文献   

6.
The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schr?dinger equation.  相似文献   

7.
We analyze the interplay of nonlinearity and dispersion in a dispersion-decreasing photonic bandgap Bragg fiber as a new platform for generating parabolic pulses. A suitably designed linearly tapered, low-index-contrast, solid-core Bragg fiber - amenable to fabrication by conventional modified chemical vapor deposition technology - is shown to yield stable parabolic pulses. The fiber design was optimized through a simple and accurate transfer-matrix formalism and pulse evolution was studied by the well-known split-step Fourier method. Our study revealed feasibility of generating parabolic pulses in such a dispersion-decreasing Bragg fiber of length as short as 1 m. We have also studied the effect of third order dispersion on generated parabolic pulse, which is an important deteriorating factor in such applications. The effective single-mode operation of the proposed device is achieved through appropriate tailoring of the outer cladding layers.  相似文献   

8.
陈艳  周桂耀  夏长明  侯峙云  刘宏展  王超 《物理学报》2014,63(1):14701-014701
本文提出了一种具有双模特性大模场面积的微结构光纤,通过有限元法计算其模场分布、基模有效模场面积及弯曲损耗特性,并分析了不同结构参量对限制损耗及有效模场面积的影响.计算结果表明:通过合理地改变光纤结构参量,可以使二阶模LP11、三阶模EH11截止,实现基模LP01、三阶模HE31双模传输,其中基模的有效模场面积可达700μm2.这种结构的光纤制作简单,在大容量光纤传输系统中具有重要应用.  相似文献   

9.
采用波长可调光参量放大器作为泵浦源,对保偏光子晶体光纤的超连续谱的产生和非线性特性进行了实验研究.将光参量放大器产生的中心波长为1.27 μm,脉宽约为250 fs,重复频率为250 kHz和单脉冲能量只有92 nJ的光脉冲耦合进0.2 m长的保偏光子晶体光纤,实验中观察到了光谱展宽和非线性效应,在1.3 μm 波长区域获得了谱宽为83 nm (1.2486 ~1.3318 μm)的超连续谱.  相似文献   

10.
Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.  相似文献   

11.
Light propagation with ultralarge modal areas in optical fibers   总被引:3,自引:0,他引:3  
We demonstrate robust single-transverse-mode light propagation in higher-order modes of a fiber, with effective area A(eff) ranging from 2,100 to 3,200 microm(2). These modes are accessed using long-period fiber gratings that enable higher-order-mode excitation over a bandwidth of 94 mm with greater than 99% of the light in the desired mode. The fiber is designed such that the effective index separation between modes is always large, hence minimizing in-fiber mode mixing and enabling light propagation over lengths as large as 12 m, with bends down to 4.5 cm radii. The modal stability increases with mode order, suggesting that A(eff) of this platform is substantially scalable.  相似文献   

12.
An erbium-doped fiber laser that produces a train of intense noiselike pulses with a broadband spectrum and a short coherence length is reported. The noiselike behavior was observed in the amplitude as well as in the phase of the pulses. The maximum spectral width obtained was 44 nm. The high intensity and the short coherence length of the light were maintained even after propagation through a long dispersive fiber. A theoretical model indicates that this mode of operation can be explained by the internal birefringence of the laser cavity combined with a nonlinear transmission element and the gain response of the fiber amplifier.  相似文献   

13.
高功率脉冲在大模场掺Yb3+光纤中的自相似传输放大特性   总被引:1,自引:1,他引:0  
分析了高功率脉冲在增益光纤中传输放大时非线性薛定谔方程的自相似解,得出注入光的脉宽和能量满足一定关系时,优化增益光纤的长度,才能满足种子光脉冲在增益光纤中的自相似传输放大.揭示了高功率种子光脉冲在光纤中自相似演化的特征参量.此外,模拟了注入能量为400 pJ,脉宽为200 fs,波形分别为正割、高斯以及3阶超高斯的种子光脉冲在纤芯为30μm的大模场增益光纤中的传输放大特性.结果表明3种波形的种子光脉冲的时间波形与光谱均演化为抛物形,时间波形与光谱均发生展宽,但光谱两侧均发生抖动.自相似传输放大后,脉冲为线性啁啾,易于压缩,对实现全光纤高功率超短脉冲产生系统具有重要意义.  相似文献   

14.
The instability of the propagation of narrowband 100-ns laser pulses in the transparency window of a single-mode fiber in the presence of continuous broadband noise is demonstrated. The modulation instability developed due to the nonlinearity and anomalous dispersion leads to a rapid decay of the narrowband component after passing through the fiber. The modulation-instability threshold is shown to be sensitive to the noise level in a spectral interval of about 100 GHz near a central wavelength of about 1.55 μm and is inversely proportional to the fiber length (varied from 1.6 to 21.0 km in the experiments). The effect is completely eliminated owing to the application of a dispersion-shifted fiber with normal dispersion.  相似文献   

15.
We investigate femtosecond-pulse propagation through large-core microstructured fibers. Although these fibers are highly multimode, excitation of the fundamental mode is readily achieved, and coupling to higher-order modes is weak even when the fiber is bent or twisted. For prechirped input pulses with energies as large as 3 nJ, pulses as short as 140 fs were produced at the output of the fiber. Such a system could prove to be extremely useful for applications such as in vivo multiphoton microscopy and endoscopy that require delivery of femtosecond pulses and collection of fluorescence.  相似文献   

16.
We illustrate observation and characterization of medium- and low-intensity shaped ultrashort pulses at lambda=1.55mum through single-shot geometry (multishot-average) second-harmonic generation-frequency-resolved optical gating. The pulses are shaped by amplitude filters in the Fourier plane of a compact folded shaper. Sensitivity to pulses with energies of less than 20 pJ and high dynamic range is reported for this configuration. Application of this method to the propagation of ~170-fs pulses through a 50-m fiber link is also illustrated.  相似文献   

17.
We demonstrate propagation of femtosecond pulses in the 800-nm range through a hollow-core photonic crystal fiber with preserved temporal and spectral profiles for pulse energies up to 4.6 nJ. Without the use of a prechirping unit, 170-fs pulses were transmitted essentially undistorted at 812 nm, near the zero-dispersion wavelength. Because of the air guidance of pulses, intensity-dependent nonlinear effects were minimal, with only 15% pulse broadening occurring at 350-mW average output power. This fiber thus is excellently suited for applications that require single-mode delivery of high-energy ultrashort pulses to the fiber output face such as, for example, miniaturized multiphoton microscopes.  相似文献   

18.
We demonstrate soliton self-frequency shift of more than 12% of the optical frequency in a higher-order mode solid, silica-based fiber below 1300nm. This new class of fiber shows great promise for supporting Raman-shifted solitons below 1300nm in intermediate energy regimes of 1 to 10nJ that cannot be reached by index-guided photonic crystal fibers or air-core photonic bandgap fibers. By changing the input pulse energy of 200fs pulses from 1.36 to 1.63nJ we observe Raman-shifted solitons between 1064 and 1200nm with up to 57% power conversion efficiency and compressed output pulse widths less than 50fs. Furthermore, due to the dispersion characteristics of the HOM fiber, we observe redshifted Cerenkov radiation in the normal dispersion regime for appropriately energetic input pulses.  相似文献   

19.
构建了一种能够直接输出高功率贝塞尔超短脉冲的光纤激光放大器. 该方案基于在光纤端面特殊设计和制备的微型负轴锥镜, 针对常规超短脉冲光纤激光放大系统所设计, 不需要引入其他分立整形器件, 避免了目前基于轴锥透镜产生贝塞尔光束的通用方法所带来的额外烦琐准直工作, 极大简化了产生贝塞尔光束的方法. 其中的微型负轴锥镜由聚焦粒子束刻蚀法在一段掺镱大模场光子晶体光纤的端面制备, 它和光纤激光系统中的固有准直透镜构成了集成化的光束整形器件. 基于数值模拟结果成功搭建的系统与理论设计一致, 直接输出了在米量级具有高度准直无衍射特性的啁啾皮秒贝塞尔超短脉冲波包, 平均功率高达10.1 W, 对应脉冲能量178 nJ, 经过光栅对压缩后脉冲宽度可达140 fs. 关键词: 衍射 超短脉冲产生 光纤器件 光纤激光器  相似文献   

20.
We study soliton phenomena accompanying the propagation of femtosecond Cr: forsterite-laser pulses through a microstructure fiber in the regime of efficient anti-Stokes frequency conversion. The dispersion of the fiber is designed in such a way as to minimize the group delay of the 1.25-m pump and the Stokes pulse within the length of soliton pulse compression in the regime of anomalous dispersion. Spectrally and temporally isolated solitonic features, resulting from soliton self-frequency shift, are detected at the output of such a microstructure fiber by means of cross-correlation frequency-resolved optical gating. PACS 42.65.Wi; 42.81.Qb  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号