首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   1篇
化学   7篇
晶体学   1篇
数学   6篇
物理学   20篇
  2021年   1篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
Journal of Thermal Analysis and Calorimetry - In recent decades, the growth of heat transfer using nanomaterials in the conventional base fluid has caught the attention of researchers...  相似文献   
2.
In quasi-steady operation, convection currents in a Bridgmandevice, used for producing a semi-conductor crystal, createinhomogeneities that may make the crystal unusable. It has oftenbeen suggested that additional forces due to rotation or magnetismmight be efficacious in reducing the segregation of the elementsof the alloy. It has been found that, over a wide range of rotationrates, there is no improvement in performance due to rotationabout the vertical axis. However, numerical results that havebeen obtained previously (Lee & Pearlstein, J. Crys. Growth240, 2002) indicate that, when effects of centrifugal buoyancyare introduced, a substantial reduction in segregation is achieved.In the work reported here, by contrast, in which we extend previouslarge-Rayleigh-number asymptotic analysis to include centrifugalbuoyancy, we find no improvement in radial segregation, butrather increasing segregation with increasing rotation rate.  相似文献   
3.
4.
5.
Summary A small experiment, ?MiniMax?, has been set up in the C0 intersection region of the Fermilab Tevatron to seek evidence for disoriented chiral condensates and to study other forward physics phenomena. The experiment consists of a proportional wire chamber telescope accompanied by scintillation (trigger) counters, a lead converter, and followed by an electromagnetic calorimeter. The solid angle accepted is a cone centered at pseudorapidity (η) of 4.1 and of radius (in η-ϕ space) of about 0.6. Over 2.5 million events thus far have demonstrated the successful operation of the apparatus, however to date the analysis has not progressed sufficiently to permit any conclusions concerning disoriented chiral condensates. presented byL. W. Jones Paper presented at the Special Session on very high-energy cosmic-ray interactions (superfamilies) of the XXIV International Cosmic-Ray Conference, Rome, August 28–September 8, 1995.  相似文献   
6.
We present an improved direct measurement of the parity-violation parameter A(b) in the Z boson-b-quark coupling using a self-calibrating track-charge technique applied to a sample enriched in Z-->bb events via the topological reconstruction of the B hadron mass. Manipulation of the Stanford Linear Collider electron-beam polarization permits the measurement of A(b) to be made independently of other Z-pole coupling parameters. From the 1996-1998 sample of 400,000 hadronic Z decays, produced with an average beam polarization of 73.4%, we find A(b)=0.906+/-0.022(stat)+/-0.023(syst).  相似文献   
7.
In the present work, a controlled growth of ZnO nanostructures by manipulating Zn metal ion concentration by the chelating action of ethylene diaminetetra acetic acid in hydrothermal method is studied. EDTA produces metal–chelate complex by the formation of bidentate ligand with Zn2+ in the solution and diminishes the reactivity of Zn metal cations. Concentration of EDTA in the mother solution was varied in different ranges like 3, 5 and 10 mM while retaining the zinc metal salt and the NaOH concentration the same. Three different morphologies of wurtzite structured ZnO nanostructures such as nanorods-bunch, separate/discrete uniformly sized hexagonal nanorods and tapered flower petals like shapes are achieved by 3, 5 and 10 mM strengths of EDTA, respectively. The medium concentration 5 mM of EDTA is found to have moderate control over producing ZnO nanostructures of uniform diameter and a high aspect (length to diameter) ratio. An array of vertically aligned free standing ZnO nanorods with uniform spacing is successfully achieved by the addition of 5 mM of EDTA in the mother solution and the same is studied for its fluorescence property at an excitation of 325 nm and it has exhibited a characteristic UV emission of ZnO around 383 nm.  相似文献   
8.
9.
MR Vagins 《Pramana》2006,67(4):691-698
What is new in the field of neutrino detection? In addition to new projects probing both the low and high ends of the neutrino energy scale, an inexpensive, effective technique is being developed to allow tagging of antineutrinos in water Cherenkov (WC) detectors via the addition to water of a solute with a large neutron cross-section and energetic γ daughters. Gadolinium is an excellent candidate since in recent years it has become very inexpensive, now less than $8 per kilogram in the form of commercially available gadolinium trichloride. This non-toxic, non-reactive substance is highly soluble in water. Neutron capture on gadolinium yields an 8.0 MeV gamma cascade easily seen in detectors like Super-Kamiokande. The uses of GdCl3 as a possible upgrade for the Super-Kamiokande detector — with a view toward improving its performance as an antineutrino detector for supernova neutrinos and reactor neutrinos — are discussed, as are the ongoing R&;D efforts which aim to make this dream a reality within the next two years.  相似文献   
10.
The parity violation parameters A(b) and A(c) of the Zb(b) and Zc(c) couplings have been measured directly, using the polar angle dependence of the polarized cross sections at the Z(0) pole. Bottom and charmed hadrons were tagged via their semileptonic decays. Both the electron and muon analyses take advantage of new multivariate techniques to increase the analyzing power. Based on the 1993-1998 SLD sample of 550,000 Z(0) decays produced with highly polarized electron beams, we measure A(b) = 0.919+/-0.030(stat)+/-0.024(syst), and A(c) = 0.583+/-0.055(stat)+/-0.055(syst).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号