首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   4篇
化学   41篇
力学   2篇
数学   5篇
物理学   43篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2006年   6篇
  2005年   9篇
  2004年   10篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  1995年   1篇
  1990年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有91条查询结果,搜索用时 78 毫秒
1.
Trimethylsilyl acetylenes can be selectively deprotected in the presence of a catalytic amount of silver salts. AgNO3 and AgOTf proved to be the most effective catalyst in a mixture of methanol, water and dichloromethane. Other functional groups, and especially silyl ethers, are not affected in these conditions.  相似文献   
2.
Contribution to the study of the behaviour of catechin in alkaline medium When catechin ( 1 ) is warmed with aqueous alkali it first undergoes rapid epimerisation. After some time a novel bridged carbocyclic enol, catechinic acid ( 3 ) separates out and may be isolated in excellent yield. Eventually catechinic acid isomerises to 2-(3′,4′-dihydroxyphenyl)-3,9-epoxy-6-oxo-bicyclo[3,3,1]-non-7-en-8,9-diol ( 4 ) via an open chain anion ( 5 ) which is also involved in the epimerisation of catechin. Assignments of structure are given and the equilibria observed are discussed.  相似文献   
3.
Metalla-bis-dicarbollides, such as the cobalta-bis-dicarbollide (COSAN) anion [Co(C2B9H11)2], have attracted much attention in biology but a deep understanding of their interactions with cell components is still missing. For this purpose, we studied the interactions of COSAN with the glucose moiety, which is ubiquitous at biological interfaces. Octyl-glucopyranoside surfactant (C8G1) was chosen as a model as it self-assembles in water and creates a hydrated glucose-covered interface. At low COSAN content and below the critical micellar concentration (CMC) of C8G1, COSAN binds to C8G1 monomers through the hydrophobic effect. Above the CMC of C8G1, COSAN adsorbs onto C8G1 micelles through the superchaotropic effect. At high COSAN concentrations, COSAN disrupts C8G1 micelles and the assemblies become similar to COSAN micelles but with a small amount of solubilized C8G1. Therefore, COSAN binds in a versatile way to C8G1 through either the hydrophobic or superchaotropic effect depending on their relative concentrations.  相似文献   
4.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   
5.
The cyclotron frequencies of singly charged carbon clusters Cn + (n ≥ 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy δm/m = 1.2 . 10-8 and the extent of the mass-dependent systematic shift (δm/m)sys = 1.7(0.6) . 10-10/u . (m - m ref) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope 12C are now possible at ISOLTRAP. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"Present address: CERN, CH-1211 Geneva 23, Switzerland; e-mail: klaus.blaum@cern.ch  相似文献   
6.
We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10(-9) mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10(-13) mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 x 10(9) positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 20 x 10(6) positrons were compressed to a density of 2.6 x 10(10) cm(-3). This is a factor of 6 improvement over earlier measurements.  相似文献   
7.
Using resonant laser ionization, beta-decay studies, and for the first time mass measurements, three beta-decaying states have been unambiguously identified in 70Cu. A mass excess of -62 976.1(1.6) keV and a half-life of 44.5(2) s for the (6-) ground state have been determined. The level energies of the (3-) isomer at 101.1(3) keV with T(1/2)=33(2) s and the 1+ isomer at 242.4(3) keV with T(1/2)=6.6(2) s are confirmed by high-precision mass measurements. The low-lying levels of 70Cu populated in the decay of 70Ni and in transfer reactions compare well with large-scale shell-model calculations, and the wave functions appear to be dominated by one proton-one neutron configurations outside the closed Z=28 shell and N=40 subshell. This does not apply to the 1+ state at 1980 keV which exhibits a particular feeding and deexcitation pattern not reproduced by the shell-model calculations.  相似文献   
8.
The masses of the noble-gas Xe isotopes with have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of of close to a million was chosen resulting in an accuracy of keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.PACS: 07.75. + h Mass spectrometers - 21.10.Dr Binding energies and masses - 27.60. + j - 32.10.Bi Atomic masses, mass spectra, abundances, and isotopes  相似文献   
9.
The mass of 22Mg     
Mass measurements with a relative precision of better than 1.5 x 10(-8) were performed on 22Mg and its reaction partners 21Na and 22Na with the ISOLTRAP Penning trap mass spectrometer at CERN, yielding the mass excesses D(22Mg)=-399.92(27) keV, D(21Na)=-2184.71(21) keV, and D(22Na)=-5181.56(16) keV. The importance of these results is twofold. First, a comparative half-life (Ft value) has been obtained for the superallowed beta decay of 22Mg to further test the conserved-vector-current hypothesis. Second, the resonance energy for the 21Na proton capture reaction has been independently determined, allowing direct comparisons of observable gamma radiation in nova explosions with the yield expected from models.  相似文献   
10.
The directionality patterns of sound emission in domestic dogs were measured in an anechoic environment using a microphone array. Mainly long-distance signals from four dogs were investigated. The radiation pattern of the signals differed clearly from an omnidirectional one with average differences in sound-pressure level between the frontal and rear position of 3-7 dB depending from the individual. Frequency dependence of directionality was shown for the range from 250 to 3200 Hz. The results indicate that when studying acoustic communication in mammals, more attention should be paid to the directionality pattern of sound emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号