首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
物理学   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 3 毫秒
1
1.
By doping titanium hydride(TiH2) into boron carbide(B4C), a series of B4C + x wt% TiH2(x = 0, 5, 10, 15, and 20)composite ceramics were obtained through spark plasma sintering(SPS). The effects of the sintering temperature and the amount of TiH2 additive on the microstructure, mechanical and electrical properties of the sintered B4C-TiB2 composite ceramics were investigated. Powder mixtures of B4C with 0–20 wt% TiH2 were heated from 1400℃ to 1800℃ for 20 min under 50 MPa. The results indicated that higher sintering temperatures contributed to greater ceramic density. With increasing TiH2 content, titanium diboride(TiB2) formed between the TiH2 and B4C matrix. This effectively improved Young’s modulus and fracture toughness of the composite ceramics, significantly improving their electrical properties: the electrical conductivity reached 114.9 S·cm-1 at 1800℃ when x = 20. Optimum mechanical properties were obtained for the B4C ceramics sintered with 20 wt% TiH2, which had a relative density of 99.9±0.1%, Vickers hardness of 31.8 GPa,and fracture toughness of 8.5 MPa·m1/2. The results indicated that the doping of fine Ti particles into the B4C matrix increased the conductivity and the fracture toughness of B4C.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号