首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
力学   1篇
物理学   6篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
魏巍  张霞  于辉  李宇鹏  张阳安  黄永清  陈伟  罗文勇  任晓敏 《物理学报》2013,62(18):184208-184208
全光连续可调的慢光技术在全光网络和光信息处理等领域具有重要的应用前景. 利用自行设计并拉制的高非线性微结构光纤, 实验研究了基于受激布里渊散射的可调谐慢光延迟. 采用单抽运光和单级延迟方案, 当抽运光功率为162.6 mW时, 在长度为120 m的高非线性微结构光纤中获得了最大76 ns的延迟量, 相当于0.76个脉冲宽度. 通过调节抽运光功率的大小, 可以实现对慢光延迟量的可调谐.该慢光延迟方案具有延迟量大、 全光可调谐及与现有光通信系统兼容等优势. 关键词: 慢光 微结构光纤 受激布里渊散射  相似文献   
2.
在应用系统的牵引及光学器件技术的推动下,工程化光纤陀螺朝着小型化、轻量化、高精度方向发展,设计了一种基于新型超细径(60/100)光纤制作的高精度光纤陀螺。相比于传统细径保偏光纤,新型超细径光纤可增加光纤的抗弯曲程度,也可使光纤环圈的绕制半径减少;同时,由于光纤变细,光纤环厚度减小,当环境温度改变时,内外层光纤温度差减小,有利于改善光纤陀螺环圈全温性能,提高光纤陀螺温度特性。首先研究了新型超细径光纤纤芯、包层结构设计,在此基础上为针对性提高涂覆胶体、绕环胶体材料的可靠性,建立了胶体材料性能随时间退化的模型;随后,基于上述新型光纤和小型化宽谱ASE光源,成功搭建了高精度光纤陀螺仪样机,陀螺整机尺寸为70 mm×70 mm×35 mm,陀螺测试零偏稳定性可达0.007°/h,可以满足陀螺小型化、轻量化、高精度需求。  相似文献   
3.
光纤到户对光纤在小弯曲半径条件下的衰减特性提出了更高的要求。微结构光纤可以实现极小弯曲半径的低衰减光信号传输,是小弯曲半径单模光纤技术解决方案的有力竞争者。设计了一种新的微结构光纤,并研制出光纤样品。这种结构的光纤具有非常优良的弯曲特性。其最小弯曲半径可达2mm,1 550nm附加损耗小于0.1dB,并且具有优良的偏振模色散特性,熔接损耗也非常小,其与G.652D单模光纤的熔接损耗为0.12dB。这些特性使其在光纤到户的复杂应用环境中具有明显的应用优势。  相似文献   
4.
开发出一种高性能保偏光纤的制造工艺,并制备出包层直径为80μm的细径高性能保偏光纤。试验表明:该光纤具有优良的全温(-50℃~85℃)偏振串音性能,光纤全温串音变化典型值在3.23dB,具有良好抗弯曲性能和良好的端面研磨性。  相似文献   
5.
We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 rim, eight sam- ples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimen- tally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator.  相似文献   
6.
蔡伟  宋凝芳  金靖  宋镜明  李伟  罗文勇  徐小斌 《中国物理 B》2017,26(11):114211-114211
We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuation(RIA) spectra in the near-infrared region from 800 nm to 1700 nm were obtained. We find that the RIA at 1550 nm is related with hydroxyl(OH-) absorption defects in addition to the identified self-trapped hole(STH) defects. Moreover, it is proposed and demonstrated that reduced OH-absorption defects can decrease the RIA at 1550 nm. The RIA at 1550 nm has effectively declined from 27.7 d B/km to 3.0 dB/km through fabrication improvement. Preliminary explanations based on the unique fabrication processes were given to interpret the RIA characteristics of PSC-PCFs. The results show that the PSC-PCFs,which offer great advantages over conventional fibers, are promising and applicable to fiber sensors in harsh environments.  相似文献   
7.
理论推导了双折射光纤环镜波长变化与轴向应变的公式,研究表明:双折射光子晶体光纤环镜轴向应变灵敏度比传统双折射光纤环镜大为减小。通过监测双折射光子晶体光纤环镜波长的变化,来实现轴向应变的测量就变得较为困难;且输出干涉光谱局部呈凹凸不平,波长监测容易导致数据测量误差。实验监测双折射光子晶体光纤环镜应变光谱,对应变光谱分析发现:随着应变增加,监测波峰下的绝对积分呈现减小的趋势。进一步精确计算分析发现:监测波峰下的绝对积分与应变成线性关系。基于此,提出了通过监测波峰下的绝对积分的变化,来实现轴向应变的测量。波峰下的绝对积分是表征各波长光强的综合性能指标,通过监测波峰下的绝对积分的变化,来实现轴向应变的测量,不仅可以克服双折射光子晶体光纤环镜监测波长变化的困难,而且还可以克服波长监测局部寻优导致的测量误差。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号