首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
为保证气囊抛光过程中抛光运动的高稳定性和均匀材料去除率,对气囊抛光非球面过程中气囊工具刚度的可控性进行了研究。通过分析气囊抛光大口径光学元件时工具的受力情况,计算了气囊工具的刚度,并分析了气囊抛光工具刚度对抛光时材料去除的影响及气囊工具刚度的影响因素。设计了气囊工具刚度控制算法并进行模拟试验,仿真结果表明,在刚度标准值根据加工要求设定以后,即可通过调节工件对气囊工具的反作用力,使得气囊抛光大口径光学元件过程中气囊工具刚度可控。  相似文献   
2.
平行磨削非轴对称非球面光学元件表面形貌   总被引:2,自引:2,他引:0       下载免费PDF全文
结合砂轮表面仿真及磨削过程的运动学仿真获得工件表面轮廓、形貌和粗糙度预计,可以作为磨削过程中的理论依据,是精密磨削加工技术中主要的研究内容之一。平行磨削技术是加工非轴对称非球面光学元件的重要手段,而相关的仿真过程报道还很少。提出一种基于平行磨削的精密磨削加工非球面表面生成的仿真方法,该方法主要包含使用高斯方法生成具有不同统计学特征的随机砂轮表面形貌,建立单磨粒运动轨迹方程和圆弧砂轮细分后与工件表面点接触的运动关系,据此给出平行磨削加工表面生成的数值算法,并对不同加工参数下的工件表面形貌进行仿真。仿真结果和测量结果的一致性验证了所给算法的正确性和有效性  相似文献   
3.
为了实现光学元件精密检测平台定位误差的自适应补偿,以保证在不同的检测环境中平台能够自行保持高精度,提出了基于检测环境监测和支持向量回归机的定位误差自适应补偿方法。首先,以多组检测环境中温度、湿度和气压的具体测量值作为训练数据,利用支持向量回归机建立定位误差最大值的预测模型,进行最大值预测。然后,将最大值同温度、湿度、气压等环境因素和位置信息一起作为训练数据,迭代使用支持向量回归机,建立任意位置定位误差预测模型。最后,将预测到的定位误差值传入检测平台控制器中进行补偿。应用雷尼绍激光干涉仪,温度、湿度和气压传感器等仪器设备,在光学元件精密检测平台上进行了具体实验。实验结果表明该技术切实可行,预测数据与实测数据差值绝对值的平均值为0.88μm,Pearson相关系数的平方为0.99,自适应补偿后平均定位误差由43μm降为1.4μm。  相似文献   
4.
大口径非球面元件可控气囊抛光系统   总被引:1,自引:1,他引:0       下载免费PDF全文
根据大口径非球面光学元件的实际加工需要,设计并制造可控气囊抛光系统,并对机构进行运动学仿真,仿真结果表明,气囊自转轴的运动空间可以满足大口径非球面光学元件的连续进动加工要求。为了证明所设计系统的可加工性,以直径320 mm的圆形平面光学元件进行加工实验。经过该气囊抛光工具24 h的抛光后,工件达到较好的面型精度,光学元件的表面粗糙度由0.272减小到0.068(=632.8 nm), PV值从1.671降低到0.905。对光学元件的实际加工实验结果表明:可控气囊抛光系统在加工过程中结构稳定性好,符合设计要求,可有效提高加工工件面型精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号