首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
物理学   6篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
在双核模型的理论框架下系统研究了超重元素Z = 116 ~121 的蒸发剩余截面,计算过程中核子扩散由主方程描述,同时考虑了全熔合与准裂变的竞争。计算基本再现了利用热熔合反应48Ca+245Cm,48Ca+249Cf 和48Ca+249Bk 产生116~118 号同位素的合成截面。同样,分别以249Bk,249Cf 和243Am 为靶,以48Ca,50Ti 和58Fe 为炮弹,计算了Z = 119~ 121 号同位素的生成截面。结果表明,这些超重核的生成截面随着质子数的增大进一步变小。例如,利用58Fe+243Am 反应合成121 号同位素的最大蒸发剩余截面仅在fb 量级。基于对选择的几个反应系统的系统分析,发现双核系统在熔合蒸发过程中偶Z 奇N 和奇Z 偶N 复合核分别有强的3n 和4n 蒸发道。The production cross sections of superheavy elements with Z = 116~121 have been investigated systematically within the dinuclear system (DNS) concept, where the master equation is solved numerically to obtain the fusion probability. The competition between complete fusion and quasifission, which can strongly affect the cross section of the compound nucleus formation, is taken into account. The evaporation residue cross sections ER calculated for the hot fusion actinide-based reactions (48Ca+245Cm, 48Ca+249Cf and 48Ca+249Bk) are basically in agreement with the known experimental data within one order of magnitude. Similar calculations for the synthesis of superheavy elements up to Z = 121 are performed using the available 249Bk, 249Cf and 243Am as targets and 48Ca, 50Ti and 58Fe as projectiles. Their production cross sections are relatively small,especially for the 58Fe+243Am→301121 reaction. A systematic analysis indicates that the 3n and 4n channelsare respectively the most favorable fusion-evaporation channels in the synthesis of even- and odd-Z superheavy elements.  相似文献   
2.
High-spin yrast structures of even-even superheavy nuclei 254-258Rf are investigated by means of total-Routhian-surface approach in three-dimensional (β2, γ, β4) space. The behavior in the moments of inertia of 256Rf is well reproduced by our calculations, which is attributed to the j15/2 neutron rotation-alignment. The competition between the rotationally aligned i13/2 proton and j15/2 neutron may occur to a large extent in 256Rf. High-spin predictions are also made for its neighboring isotopes 254,258Rf, showing that the alignment of the j15/2 neutron pair is more favored than that of the i13/2 proton pair.  相似文献   
3.
The properties of γ instability in rapidly rotating even-even132-138 Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of(β2, γ,β4). It is found that even-even134-138 Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component.The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend ofγ correlations(e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly.  相似文献   
4.
The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.  相似文献   
5.
基于(β2,γ,β4)形变空间下对-形变自洽的原子核能量面计算方法,系统研究分析了50 < Z < 82区偶偶核的形状及硬度演化特征。计算的平衡形变与其它理论预言及存在的实验值进行了对比。从相应的形变势能曲线提取了与β2及γ相关的硬度参数Cβ,Cγ,这与实验观测到的低位β及γ振动带信息相符。还简要讨论了转动情况下的硬度演化,例如基于蜈蚣型E-GOS曲线,表明存在不可忽略的振动效应。Nuclear shape and stiffness evolutions in even-even nuclei with 50 < Z < 82 are systematically analyzed in terms of the pairing-deformation self-consistent nuclear-energy-surface calculation in (β2,γ,β4) deformation space. Calculated equilibrium deformations are presented and compared with other theoretical predictions and available experimental data. The stiffness parameters Cβ and Cγ respectively related to quadrupole deformations β2 and γ are determined from the deformation energy curves, which are consistent with the observed low-lying β and/or γ bands. The stiffness evolution under rotation along the yrast line is briefly discussed, e.g., on the basis of the centipidelike E-GOS curves, showing an unnegligible vibration effect.  相似文献   
6.
Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94-118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional(β_2, γ, β_4) deformation space. Taking the heavier (252)~Cf nucleus(with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β_2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei(e.g., the Z =112-118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications(e.g.,the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号