首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   5篇
晶体学   1篇
物理学   5篇
  2006年   4篇
  2005年   2篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
利用VHF-PECVD分解硅烷和氢气的混合气体来制备本征微晶硅薄膜.运用拉曼散射和X射线衍射研究了不同硅烷浓度对薄膜的影响.随着硅烷浓度的增加,沉积速率和光敏性增加而晶化率下降.将优化的本征材料应用到pin电池中,得到本征层厚度约为1μm的微晶电池,效率达5.87;.  相似文献   
2.
吴志猛  雷青松  耿新华  赵颖  孙建  奚建平 《中国物理》2006,15(11):2713-2717
This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (SiH\sj{*}, H微晶硅 VHF-PECVD 发射光谱学 薄膜物理学microcrystalline silicon, VHF-PECVD, optical emission spectroscopy2005-11-092005-11-092005-12-12This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (Sill^*, H^* and H^*β) are investigated by varying the deposition parameters. The result shows that the discharge power, silane concentrations and substrate temperature affect the OES intensities. When the discharge power at silane concentration of 4% increases, the OES intensities increase first and then are constant, the intensities increase with the discharge power monotonously at silane concentration of 6%. The SiH^* intensity increases with silane concentration, while the intensities of H^*α and H^*β increase first and then decrease. When the substrate temperature increases, the SiH^* intensity decreases and the intensities of H^*α and H^*β are constant. The correlation between the intensity ratio of IH^*α/ISiH^* and the crystalline volume fraction (Xc) of films is confirmed.  相似文献   
3.
Highly conductive boron-doped hydrogenated microcrystalline silicon (\mu c-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures $T_{\rm S})$ ranging from 90$^\circ$C to 270$^\circ$C. The effects of $T_{\rm S}$ on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on $T_{\rm S}$. As $T_{\rm S}$ increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at $T_{\rm S}$=210$^\circ$C, 2) the crystalline volume fraction ($X_{\rm c})$ and the grain size increase initially, then reach their maximum values at $T_{\rm S}$=140$^\circ$C, and finally decrease, 3) the dark conductivity ($\sigma _{\rm d})$, carrier concentration and Hall mobility have a similar dependence on $T_{\rm S}$ and arrive at their maximum values at $T_{\rm S}$=190$^\circ$C. In addition, it is also observed that at a lower substrate temperature $T_{\rm S}$, a higher dopant concentration is required in order to obtain a maximum $\sigma _{\rm d}$.  相似文献   
4.
雷青松  吴志猛  耿新华  赵颖  孙健  奚建平 《中国物理》2006,15(12):3033-3038
Hydrogenated silicon (Si:H) thin films for application in solar cells were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170℃. The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current--voltage (I-V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.  相似文献   
5.
雷青松  吴志猛  耿新华  赵颖  奚建平 《中国物理》2005,14(11):2342-2347
Hydrogenated microcrystalline and amorphous silicon thin films were prepared by very high frequency plasmaenhanced chemical vapour deposition (VHF PECVD) by using a mixture of silane and hydrogen as source gas. The influence of deposition parameters on the transition region of hydrogenated silicon films growth was investigated by varying the silane concentration (SC), plasma power (Pw), working pressure (P), and substrate temperature (Ts). Results suggest that SC and Ts are the most critical factors that affect the film structure transition from microcrystalline to amorphous phase. A narrow region in the range of SC and Ts, in which the rapid phase transition takes place, was identified. It was found that at lower P or higher Pw, the transition region is shifted to larger SC. In addition, the dark conductivity and photoconductivity decrease with SC and show sharp changes in the transition region. It proposed that the transition process and the transition region are determined by the competition between the etching effect of atomic hydrogen and the growth of amorphous phase.  相似文献   
6.
In this paper intrinsic microcrystalline silicon films have been prepared by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) with different substrate temperature and pressure. The film properties were investigated by using Raman spectra, x-ray diffraction, scanning electron microscope (SEM), and optical transmittance measurements, as well as dark conductivity. Raman results indicate that increase of substrate temperature improves the microcrystallinity of the film. The crystallinity is improved when the pressure increases from 50Pa to 80Pa and the structure transits from microcrystalline to amorphous silicon for pressure higher than 80Pa. SEM reveals the effect of substrate temperature and pressure on surface morphology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号