首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
  国内免费   1篇
化学   1篇
物理学   3篇
  2019年   1篇
  2015年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
储鑫  余靓  侯仰龙 《中国物理 B》2015,24(1):14704-014704
Progress in surface modification of magnetic nanoparticles(MNPs)is summarized with regard to organic molecules,macromolecules and inorganic materials.Many researchers are now devoted to synthesizing new types of multi-functional MNPs,which show great application potential in both diagnosis and treatment of disease.By employing an ever-greater variety of surface modification techniques,MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging(MRI),fluorescent marking,cell targeting,and drug delivery.  相似文献   
2.
Diagnosis facilitates the discovery of an impending disease. A complete and accurate treatment of cancer depends heavily on its early medical diagnosis. Cancer, one of the most fatal diseases world-wide, consistently affects a larger number of patients each year. Magnetism, a physical property arising from the motion of electrical charges, which causes attraction and repulsion between objects and does not involve radiation, has been under intense investigation for several years. Magnetic materials show great promise in the application of image contrast enhancement to accurately image and diagnose cancer. Chelating gadolinium (Gd Ⅲ) and magnetic nanoparticles (MNPs) have the prospect to pave the way for diagnosis, operative management, and adjuvant therapy of different kinds of cancers. The potential of MNP-based magnetic resonance (MR) contrast agents (CAs) now makes it possible to image portions of a tumor in parts of the body that would be unclear with the conventional magnetic resonance imaging (MRI). Multiple functionalities like variety of targeting ligands and image contrast enhancement have recently been added to the MNPs. Keeping aside the additional complexities in synthetic steps, costs, more convoluted behavior, and effects in-vivo, multifunctional MNPs still face great regulatory hurdles before clinical availability for cancer patients. The trade-off between additional functionality and complexity is a subject of ongoing debate. The recent progress regarding the types, design, synthesis, morphology, characterization, modification, and the in-vivo and in-vitro uses of different MRI contrast agents, including MNPs, to diagnose cancer will be the focus of this review. As our knowledge of MNPs' characteristics and applications expands, their role in the future management of cancer patients will become very important. Current hurdles are also discussed, along with future prospects of MNPs as the savior of cancer victims.  相似文献   
3.
Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles(MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging(MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.  相似文献   
4.
高温下氨茴内酐可以和4-羟基香豆素反应得到两种位置异构的杂环化合物12H-色烯[2,3-b]喹啉-12-酮和6H-色烯[4,3-b]喹啉-6-酮.该反应是一种热促下的转化,不需要催化剂或者添加物的协助,也没有毒害的废弃物产生.反应路线简短,优于已有的制备此类杂环的其它方法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号