首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   3篇
化学   125篇
晶体学   2篇
力学   6篇
数学   23篇
物理学   40篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2014年   4篇
  2013年   16篇
  2012年   10篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   4篇
  2007年   12篇
  2006年   7篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1942年   1篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
1.
The diastereoselective synthesis of naphthyl amino alcohols via nucleophilic addition to racemic 1-dimethylamino-2-methylpentan-3-one was studied. The use of the appropriate experimental conditions allowed the synthesis of both diastereoisomers. The relative configurations were established via NOESY experiments.  相似文献   
2.
3.
Cyclophanes 3 and 4 were prepared as initiator cores for the construction of dendrophanes (dendritic cydophanes) 1 and 2 , respectively, which mimic recognition sites buried in globular proteins. The tetra-oxy[6.1.6.1]paracyclophane 3 was prepared by a short three-step route (Scheme 1) and possesses a cavity binding site shaped by two diphenylmethane units suitable for the inclusion of flat aromatic substrates such as benzene and naphthalene derivatives as was shown by 1H-NMR binding titrations in basic D2O phosphate buffer (Table 1). The larger cyclophane 4 , shaped by two wider naphthyl(phenyl)methane spacers, was prepared in a longer, ten-step synthesis (Scheme 2) which included as a key intermediate the tetrabromocyclophane 5 . 1H-NMR Binding studies in basic borate buffer in D2O/CD3OD demonstrated that 4 is an efficient steroid receptor. In a series of steroids (Table 1), complexation strength decreased with increasing substrate polarity and increasing number of polar substituents; in addition, electrostatic repulsion between carboxylate residues of host and guest also affected the binding affinity strongly. The conformationally flexible tetrabromocyclophane 5 displayed a pronounced tendency to form solid-state inclusion compounds of defined stoichiometry, which were analyzed by X-ray crystallography (Fig. 2). 1,2-Dichloroethane formed a cavity inclusion complex 5a with 1:1 stoichiometry, while in the 1:3 inclusion compound 5b with benzene, one guest is fully buried in the macrocyclic cavity and two others are positioned in channels between the Cyclophanes in the crystal lattice. In the 1:2 inclusion compound 5c , two toluene molecules penetrate with their aromatic rings the macrocyclic cavity from opposite sides in an antiparallel fashion. On the other hand, p-xylene (= 1,4-dimethylbenzene) in the 1:1 compound 5d is sandwiched between the cyclophane molecules with its two Me groups penetrating the cavities of the two macrocycles. In the 1:2 inclusion compound 5e with tetralin (= 1,2,3,4-tetrahydronaphthalene), both host and guest are statically disordered. The shape of the macrocycle in 5a – e depends strongly on the nature of the guest (Fig. 4). Characteristic for these compounds is the pronounced tendency of 5 to undergo regular stacking and to form channels for guest inclusion; these channels can infinitely extend across the macrocyclic cavities (Fig. 6) or in the crystal lattice between neighboring cyclophane stacks (Fig. 5). Also, the crystal lattice of 5c displays a remarkable zig-zag pattern of short Br…?O contacts between neighboring macrocycles (Fig. 7).  相似文献   
4.
Water-soluble dendritic cyclophanes (dendrophanes) of first ( 1 , 4 ), second ( 2 5 ), and third generation ( 3 6 ) with poly(ether amide) branching and 12, 36, and 108 terminal carboxylate groups, respectively, were prepared by divergent synthesis, and their molecular recognition properties in aqueous solutions were investigated. Dendrophanes 1 – 3 incorporate as the initiator core a tetraoxa[6.1.6.1]paracyclophane 7 with a suitably sized cavity for inclusion complexation of benzene or naphthalene derivatives. The initiator core in 4 – 6 is the [6.1.6.1]cyclo-phane 8 shaped by two naphthyl(phenyl) methane units with a cavity suitable for steroid incorporation. The syntheses of 1 – 6 involved sequential peptide coupling to monomer 9 , followed by ester hydrolysis (Schemes 1 and 4), Purification by gel-permeation chromatography (GPC; Fig. 3) and full spectral characterization were accomplished at the stage of the intermediate poly(methyl carboxylates) 10 – 12 and 23 – 25 , respectively. The third-generation 108-ester 25 was also independently prepared by a semi-convergent synthetic strategy, starting from 4 (Scheme 5). All dendrophanes with terminal ester groups were obtained in pure form according to the 13C-NMR spectral criterion (Figs, 1 and 5). The MALDI-TOF mass spectra of the third-generation derivative 25 (mol. wt. 19328 D) displayed the molecular ion as base peak, accompanied by a series of ions [Mn(1041 ± 7)]+, tentatively assigned as characteristic fragment ions of the poly(ether amide) cascade. A similar fragmentation pattern was also observed in the spectra of other higher-generation poly(ether amide) dendrimers. Attempts to prepare monodisperse fourth-generation dendrophanes by divergent synthesis failed. 1H-NMR and fluorescence binding titrations in basic aqueous buffer solutions showed that dendrophanes 1 – 3 complexed benzene and naphthalene derivatives, whereas 4 – 6 bound the steroid testosterone. Complexation occurred exclusively at the cavity-binding site of the central cyclophane core rather than in fluctuating voids in the dendritic branches, and the association strength was similar to that of the complexes formed by the initiator cores 7 and 8 , respectively (Tables 1 and 3). Fluorescence titrations with 6-(p-toluidino)naphthalene-2-sulfonate as fluorescent probe in aqueous buffer showed that the micropolarity at the cyclophane core in dendrophanes 1 - 3 becomes increasingly reduced with increasing size and density of the dendritic superstructure; the polarity at the core of the third-generation compound 3 is similar to that of EtOH (Table 2). Host-guest exchange kinetics were remarkably fast and, except for receptor 3 , the stabilities of all dendrophane complexes could be evaluated by 1H-NMR titrations. The rapid complexation-decomplexation kinetics are explained by the specific attachment of the dendritic wedges to large, nanometer-sized cyclophane initiator cores, which generates apertures in the surrounding dendritic superstructure.  相似文献   
5.
6.
Apparent molar relative enthalpies were measured for the nonionic ethoxylated surfactant CH(3)-(CH(2))(5)-(OCH(2)-CH(2))(5)OH (C(6)E(5)) in aqueous solution at constant molality of the ionic surfactant CH(3)-(CH(2))(5)-SO(-)(3)Na(+)(C(6)SNa) at 25 degrees C. The experimental data obtained by a stepwise dilution process allowed evaluation of the C(6)E(5) first interaction parameter at several constant molalities of C(6)SNa. The C(6)E(5) critical micelle composition as a function of the C(6)SNa molality was also estimated. The experimental calorimetric data, together with the mixed micelles composition computed in the past by some of us [Ciccarelli et al., Langmuir 14, 7130 (1998)], allowed computation of the Deltah(Mic) of micellization. The experimental data are compared to those predicted by the ideal solution model and regular solution model of mixed micellization. From a calorimetric study performed on the water-hexanol-C(6)SNa and water-penthaethylene glycol-C(6)SNa model systems, it can be argued that the interactions among the hydrophilic heads in the C(6)E(5)-C(6)SNa mixed micelles prevail on the contribution of the hydrophobic tails in ruling the enthalpic properties of the system.  相似文献   
7.
The realization of a reliable receptor biosensor requires stable, long-lasting, reconstituted biomembranes able to supply a suitable biomimetic environment where the receptor can properly work after incorporation. To this end, we developed a new method for preparing stable biological membranes that couple the biomimetic properties of BLMs (bilayer lipid membranes) with the high stability of HBMs (hybrid bilayer membranes); this gives rise to an innovative assembly, named MHBLM (mixed hybrid bilayer lipid membrane). The present work deals with the characterization of biosensors achieved by embedding an ionotropic glutamate receptor (GluR) on MHBLM. Thanks to signal (transmembrane current) amplification, which is typical of natural receptors, the biosensor here produced detects glutamate at a level of nmol L(-1). The transmembrane current changes linearly vs glutamate up to 100 nmol L(-1), while the limit of detection is 1 nmol L(-1). In addition, the biosensor response can be modulated both by receptor agonists (glycine) and antagonists (Mg(2+)) as well, and by exploiting the biosensor response, the distribution of different kinds of ionotropic GluR present in the purified sample, and embedded in MHBLM, was also evaluated. Finally, one of the most important aspects of this investigation is represented by the high stability of the biomimetic system, which allows the use of biosensor under flowing conditions, where the solutions flow on both biomembrane faces.  相似文献   
8.
The effect of glycerol on the micellization of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and of the ethoxylated nonionic surfactant Brij 58 has been investigated by various experimental techniques. For both surfactants the critical micellar concentration (cmc), determined by surface tension measurements, is almost unaffected by the presence of glycerol in the mixture; only at high glycerol concentrations (>/=20% w/w) does the cmc significantly increase. The area per surfactant molecule at the air-solution interface, A, increases with increasing glycerol weight percentage, w(g). Fluorescence quenching measurements indicate that the presence of glycerol induces a lowering of the aggregation number of both surfactants. The glycerol intradiffusion coefficient has been measured by the pulsed-gradient spin-echo NMR technique as a function of glycerol content at constant surfactant concentration. It is almost unaffected by the presence of the surfactants, indicating that no direct glycerol-surfactant interaction occurs in the mixture. The surfactant intradiffusion coefficient has been also measured. In the case of CTAB, it increases with increasing glycerol concentration, a reflection of the decreased aggregation number. For Brij 58, in spite of the lowering of the aggregation number, the surfactant intradiffusion coefficient decreases with increasing glycerol concentration, suggesting an increase of the intermicellar interaction. The experimental evidence shows that for both surfactants the micellization is affected by the presence of glycerol through an indirect, solvent-mediated mechanism. In the case of CTAB, the main effect of glycerol is a lowering of the medium dielectric constant, which enhances the electrostatic interactions in solution. In the case of Brij 58, the results can be interpreted in terms of a salting-out effect according to which glycerol competes with the surfactant for water molecules, causing a dehydration of the surfactant ethoxylic headgroup.  相似文献   
9.
The therapy of human cancer is one of the more pursued goals by medicinal chemistry research. Most of the compounds clinically used as a treatment owe their efficacy to their cytotoxic interaction (direct or indirect) with nuclear DNA. This interaction results in the inhibition of DNA synthesis and the degradation of nucleic strands. Ellipticine is a naturally occurring 6H-pyrido[4,3-b]carbazole alkaloid endowed with antitumor activity, and several ellipticine derivatives have been used in clinical trials. We previously reported some 1,4-dimethyl-9H-carbazole derivatives structurally related to ellipticine. The purpose of our research was to transform the pyridocarbazole in a prodrug so that it would have more penetration in the tumor cells and block their replication. Our prodrug is slowly hydrolyzed in human plasma in the corresponding acid. From these preliminary results, we deduce that our compound can block cellular replication. Our hypothesis is that the antitumoral activity is probably related to the induction of damage to DNA, without cellular lysis in the short term.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号