首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2266篇
  免费   73篇
  国内免费   9篇
化学   1640篇
晶体学   26篇
力学   33篇
数学   157篇
物理学   492篇
  2023年   16篇
  2022年   12篇
  2021年   19篇
  2020年   25篇
  2019年   30篇
  2018年   20篇
  2017年   13篇
  2016年   46篇
  2015年   36篇
  2014年   51篇
  2013年   98篇
  2012年   104篇
  2011年   125篇
  2010年   72篇
  2009年   74篇
  2008年   127篇
  2007年   125篇
  2006年   122篇
  2005年   124篇
  2004年   98篇
  2003年   90篇
  2002年   81篇
  2001年   50篇
  2000年   58篇
  1999年   38篇
  1998年   22篇
  1997年   26篇
  1996年   41篇
  1995年   14篇
  1994年   25篇
  1993年   28篇
  1992年   27篇
  1991年   22篇
  1990年   21篇
  1989年   37篇
  1988年   30篇
  1987年   29篇
  1986年   29篇
  1985年   40篇
  1984年   41篇
  1983年   17篇
  1982年   28篇
  1981年   31篇
  1980年   27篇
  1979年   15篇
  1978年   26篇
  1977年   13篇
  1976年   21篇
  1975年   18篇
  1973年   20篇
排序方式: 共有2348条查询结果,搜索用时 15 毫秒
1.
2.
The polyaddition of fluorine‐containing bis(epoxide)s and fluorine‐containing triazine di(aryl ether)s were examined to give the corresponding fluorine‐containing poly(cyanurate)s. It was observed that the synthesized fluoropolymers had good thermal stabilities and good film‐forming properties. The glass transition temperatures (Tg's) and refractive‐indices (nD's) of synthesized polymers were determined by differential scanning calorimetry and ellipsometry, respectively, and it was found that the values of Tg's and nD's were supported by their fluorine containing ratios and skeletons. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4421–4429, 2007  相似文献   
3.
We prepared biodegradable poly(ethylene oxide) (PEO)/poly(L ‐lactic acid) (PLLA) graded blends by the dissolution–diffusion process, and discussed the biodegradability and tensile strength of the graded blends by comparing isotropic blend and PLLA only. All the graded blends were degraded more largely than the PLLA only and isotropic blend (PEO: 37.5 wt %), which had the same content as the total content of those graded blends. The graded blend having most excellent wide compositional gradient was degraded most largely with the enzyme. Thus, graded structure of the blends promoted their biodegradabilities large. It was considered that the dissolution of PEO with water increased the surface area attacked by the enzyme, while PEO caught PLLA oligomers to promote the biodegradation of PLLA. Then, the biodegradabilities of the graded blends were suppressed by the increasing crystallinity of PLLA. Furthermore, the strengths of all the graded blends were larger than those of the isotropic blend. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2972–2981, 2007  相似文献   
4.
A series of new poly(butylene succinate) (PBS)/layered silicate nanocomposites were prepared successfully by simple melt extrusion of PBS and organically modified layered silicates (OMLS). Three different types of OMLS were used for the preparation of nanocomposites: two functionalized ammonium salts modified montmorillonite and a phosphonium salt modified saponite. The structure of the nanocomposites in the nanometer scale was characterized with wide-angle X-ray diffraction and transmission electron microscopic observations. With three different types of layered silicates modified with three different types of surfactants, the effect of OMLS in nanocomposites was investigated by focusing on four major aspects: structural analysis, materials properties, melt rheological behavior, and biodegradability. Interestingly, all these nanocomposites exhibited concurrent improvements of material properties when compared with pure PBS. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3160–3172, 2003  相似文献   
5.
A liquid chromatography-mass spectrometry (LC/MS) method was developed for the separation and determination of linear alkylbenzenesulfonates (C10-C14 LAS) in environmental water samples using a hydrophilic polymer column (Shodex Mspak GF-310 4D). This method involves a solid-phase extraction of the LAS samples with a Sep-Pak PS-2 cartridge. The LAS components were separated on the column with a mobile phase of 29% (w/v) acetonitrile-water containing 0.8 mM di-n-butylammonium acetate and 0.2 M acetic acid, and were detected by mass spectrometry with electrospray ionization. Detection limits of the developed method based on selected ion monitoring (SIM) technique for the C10-C14 LAS standards were 13-47 ng L(-1). The concentrations of the C10-C14 LAS in the environmental water samples ranged between 5-317 microg L(-1) for a river water sample and 0.4-6.4 microg L(-1) for a seawater sample. Linear relationships between the logarithms of retention factors and the alkyl chain lengths for each phenyl positional isomer of LAS could successfully be used for the identification of the isomer peaks.  相似文献   
6.
Let Cld AW (X) be the hyperspace of nonempty closed subsets of a normed linear space X with the Attouch–Wets topology. It is shown that the space Cld AW (X) and its various subspaces are AR's. Moreover, if X is an infinite-dimensional Banach space with weight w(X) then Cld AW (X) is homeomorphic to a Hilbert space with weight 2 w(X).  相似文献   
7.
8.
Selective oxidation of an AlInAs layer was investigated for enhancement of magneto-optic effect in an optical isolator. Twelve times nonreciprocal phase shift enhancement was estimated from a measured AlInAs-oxide refractive index.  相似文献   
9.
The oxygen reduction active sites were visualized around the O2/SOFC cathode/electrolyte triple phase boundaries (TPB) by the16O/18O exchange techniques and secondary ion mass spectrometry (SIMS) analysis. The higher18O concentration is observed on the cathode top surfaces (La0.9Sr0.1MnO3-mesh, Au-mesh, and Ag-porous), which suggested the promotion of oxygen adsorption and oxygen surface exchange at the cathode. The oxygen diffusion through the bulk of cathode occurred at the La0.9Sr0.1MnO3-mesh and the Ag-porous cathodes, not at the Au-mesh cathode. On the YSZ surfaces after removing the cathode, the active sites for oxygen incorporation were analyzed by SIMS. The active sites for oxygen incorporation were at the La0.9Sr0.1MnO3/YSZ interface as well as the TPB. On the other hand, the active sites for oxygen incorporation are limited to the TPB in the case of the Au-mesh removed YSZ surface. From the SIMS analysis, the expansion of the active sites for oxygen incorporation is less than a few μm from the TPB lines. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   
10.
A series of gel polymer electrolytes containing PVdF as homo polymer, a mixture of 1:1 Ethylene Carbonate (EC) : Propylene Carbonate (PC) as plasticizer and lithium-bistrifluoromethane sulphone imide [imide — LiN (CF3SO2)2] has been developed. Amounts of polymer (PVdF), plasticizer and the imide lithium salt have been varied as a function of their weight ratio composition in this regard. Dimensionally stable films possessing appreciable room temperature conductivity values have been obtained with respect to certain weight ratio compositions. However, conductivity data have been recorded at different possible temperatures, i.e., from 20 °C to 65 °C. XRD and DSC studies were carried out to characterize the polymer films for better amorphicity and reduced glass transition temperature, respectively. The electrochemical interface stability of the PVdF based gel polymer electrolytes over a range of storage period (24 h – 10 days) have been investigated using A.C. impedance studies. Test cells containing Li/gel polymer electrolyte (GPE)/Li have been subjected to undergo 50 charge-discharge cycles in order to understand the electrochemical performance behaviour of the dimensionally stable films of superior conductivity. The observed capacity fade of less than 20% even after 50 cycles is in favour of the electrochemical stability of the gel polymer electrolyte containing 27.5% PVdF −67.5 % EC+PC −5% imide salt. Cyclic voltammetry studies establish the possibility of a reversible intercalation — deintercalation process involving Li+ ions through the gel polymer electrolyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号